18.已知集合A={x|0≤x≤2},集合B={x|y=$\sqrt{x-1}$},則A∩B=(  )
A.{x|1<x<2}B.{x|1≤x≤2}C.{x|1≤x<2}D.{x|0≤x≤2}

分析 求出B中x的范圍確定出B,找出A與B的交集即可.

解答 解:由B中y=$\sqrt{x-1}$,得到x-1≥0,
解得:x≥1,即B={x|x≥1},
∵A={x|0≤x≤2},
∴A∩B={x|1≤x≤2},
故選:B.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某市家庭煤氣的使用量x(m3)和煤氣費f(x)(元)滿足關(guān)系f(x)=$\left\{\begin{array}{l}{C,0<x≤A}\\{C+B(x-A),x>A}\end{array}\right.$,已知某家庭今年前三個月的煤氣費如表
 月份 用氣量煤氣費 
 一月份 4m3 4元
 二月份 25m3 14元
 三月份35m3  19元
若四月份該家庭使用了20m3的煤氣,則其煤氣費為( 。
A.11.5元B.11元C.10.5元D.10元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.正方形ABCD的邊長為2,P,Q分別是線段AC,BD上的點,則$\overrightarrow{AP}•\overrightarrow{PQ}$的最大值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列命題錯誤的是( 。
A.若p∨q為假命題,則p∧q為假命題
B.若a,b∈[0,1],則不等式a2+b2<$\frac{1}{4}$成立的概率是$\frac{π}{16}$
C.命題“?x∈R使得x2+x+1<0”的否定是:“?x∈R,x2+x+1≥0”
D.已知函數(shù)f(x)可導(dǎo),則“f′(x0)=0”是“x0是函數(shù)f(x)極值點”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=$\frac{1}{x}$+$\frac{{e}^{x}}{e}$-3,F(xiàn)(x)=lnx+$\frac{{e}^{x}}{e}$-3x+2.
(1)判斷f(x)在(0,+∞)上的單調(diào)性;
(2)判斷函數(shù)F(x)在(0,+∞)上零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.執(zhí)行如圖的程序框圖,則輸出的 A=( 。
A.$\frac{70}{29}$B.$\frac{29}{12}$C.$\frac{29}{70}$D.$\frac{169}{70}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求下列函數(shù)的單調(diào)區(qū)間:
(1)y=$\sqrt{3}$sin($\frac{2π}{5}$x-$\frac{π}{3}$);
(2)y=4sin($\frac{π}{3}$-$\frac{3}{4}$x);
(3)y=$\frac{1}{2}$cos(3x+$\frac{π}{4}$);
(4)y=3tan($\frac{1}{2}$x-$\frac{2}{3}$π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若函數(shù)y=ln($\sqrt{1+a{x}^{2}}$-x)為奇函數(shù),則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,A,B,C所對的邊分別為a,b,c.已知sinC=$\frac{\sqrt{10}}{4}$.
(1)若a-b=5,求△ABC面積的最大值;
(2)若a=2,2sin2A-sinAsinC=sin2C,求b及c的長.

查看答案和解析>>

同步練習(xí)冊答案