若二項式(3x-
1
x
n展開式中各項系數(shù)的之和為64,則該展開式中常數(shù)項為
 
(用數(shù)字作答).
考點:二項式系數(shù)的性質(zhì)
專題:二項式定理
分析:令x=1,可求出展開式中的各項系數(shù)之和,由已知求出n=6,利用二項展開式的通項公式求出答案.
解答: 解:由已知,令x=1,展開式中的各項系數(shù)之和為2n
∴2n=64
∴n=6.
∴二項展開式的通項為Tr+1=(-1)r36-rC6rx6-
3r
2
,
6-
3r
2
=0,解得r=4,
∴二項式展開式中常數(shù)項為:32C64=135.
故答案為:135.
點評:本題考查二項式定理的應用,考查賦值思想、求指定的項.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知“x>a(a∈R)”是“x2>4”的充分不必要條件,則a的取值范圍是( 。
A、(-∞,2]
B、(-∞,2)
C、(2,+∞)
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中假命題是(  )
A、?x∈R,2x-1>0
B、?x0∈R,tanx0=2014
C、?x∈R,x2-2x-1>0
D、?x0∈R,sinx0+cosx0=-
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若{an}無窮等比數(shù)列,則下列數(shù)列可能不是等比數(shù)列的是( 。
A、{a2n}
B、{a2n-1}
C、{an•an+1}
D、{an+an+1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c均為正實數(shù),且ab+bc+ca=1.
求證:(Ⅰ)a+b+c≥
3

(Ⅱ)
a
bc
+
b
ca
+
c
ab
3
a
+
b
+
c
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖三棱柱ABC-A1B1C1的底面是邊長為3的正三角形,側(cè)棱AA1垂直于底面ABC1;AA1=
3
3
2
,D是CB延長線上一點,且BD=BC,
(1)求證:直線BC1∥平面AB1D
(2)若在幾何體A1B1C1-ACD內(nèi)隨機取一點,求該點落在三棱錐C1-ABB1內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,AB是⊙O的直徑,C、F是⊙O上的點,OC垂直于直徑AB,過F點作⊙O的切線交AB的延長線于D.連結CF交AB于E點.
(Ⅰ)求證:DE2=DB•DA;
(Ⅱ)若⊙O的半徑為4
3
,OB=
3
OE,求EF的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某化工企業(yè)生產(chǎn)某種產(chǎn)品,生產(chǎn)每件產(chǎn)品的成本為3元,根據(jù)市場調(diào)查,預計每件產(chǎn)品的出廠價為x元(7≤x≤10)時,一年的產(chǎn)量為(11-x)2萬件;若該企業(yè)所生產(chǎn)的產(chǎn)品能全部銷售,則稱該企業(yè)正常生產(chǎn);但為了保護環(huán)境,用于污染治理的費用與產(chǎn)量成正比,比例系數(shù)為常數(shù)a(1≤a≤3).
(Ⅰ)求該企業(yè)正常生產(chǎn)一年的利潤L(x)與出廠價x的函數(shù)關系式;
(Ⅱ)當每件產(chǎn)品的出廠價定為多少元時,企業(yè)一年的利潤最大,并求最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)(x∈R)滿足f(x+1)+f(x)=0,當x∈[0,1]時,f(x)=x
1
2008
,則f(
11
5
)、f(
7
5
)、f(
22
5
)由大到小的排列是
 

查看答案和解析>>

同步練習冊答案