【題目】甲、乙兩人進(jìn)行圍棋比賽,約定每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一人比對(duì)方多2分或下滿6局時(shí)停止.設(shè)甲在每局中獲勝的概率為p(p> ),且各局勝負(fù)相互獨(dú)立.已知第二局比賽結(jié)束時(shí)比賽停止的概率為 .
(1)求p的值;
(2)設(shè)ξ表示比賽停止時(shí)已比賽的局?jǐn)?shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.
【答案】
(1)解:當(dāng)甲連勝2局或乙連勝2局時(shí),
第二局比賽結(jié)束時(shí)比賽停止,故 ,
解得
(2)解:依題意知ξ的所有可能取值為2,4,6,
設(shè)每?jī)删直荣悶橐惠啠瑒t該輪結(jié)束時(shí)比賽停止的概率為 ,
若該輪結(jié)束時(shí)比賽還將繼續(xù),則甲、乙在該輪中必是各得一分,
此時(shí),該輪比賽結(jié)果對(duì)下輪比賽是否停止沒有影響,從而有 ,
則隨機(jī)變量ξ的分布列為:
ξ | 2 | 4 | 6 |
P |
故
【解析】(1)已知各局勝負(fù)相互獨(dú)立,第二局比賽結(jié)束時(shí)比賽停止,包含甲連勝2局或乙連勝2局,寫出甲連勝兩局的概率和乙連勝兩局的概率求和為 .解出關(guān)于P的方程.(2)因?yàn)楸荣愡M(jìn)行到有一人比對(duì)方多2分或下滿6局時(shí)停止,所以ξ的所有可能取值為2,4,6,而ξ=2已經(jīng)做出概率,只要求出ξ=4或ξ=6時(shí)的概率即可,最后求出期望.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解離散型隨機(jī)變量及其分布列(在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,在四棱錐中,底面是邊長(zhǎng)為的正方形,平面平面, , 為中點(diǎn),且.
(Ⅰ)求證: 平面;
(Ⅱ)求證: ;
(Ⅲ)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲罐中有4個(gè)紅球,3個(gè)白球和3個(gè)黑球;乙罐中有5個(gè)紅球,3個(gè)白球和2個(gè)黑球.先從甲罐中隨機(jī)取出一球放入乙罐,分別以A1、A2和A3表示由甲罐取出的球是紅球,白球和黑球的事件;再?gòu)囊夜拗须S機(jī)取出一球,以B表示由乙罐取出的球是紅球的事件,下列的結(jié)論:
①P(B)= ;
②P(B|A1)= ;
③事件B與事件A1不相互獨(dú)立;
④A1 , A2 , A3是兩兩互斥的事件;
⑤P(B)的值不能確定,因?yàn)樗cA1 , A2 , A3中哪一個(gè)發(fā)生有關(guān),
其中正確結(jié)論的序號(hào)為 . (把正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中裝有圍棋黑色和白色棋子共7枚,從中任取2枚棋子都是白色的概率為. 現(xiàn)有甲、乙兩人從袋中輪流摸取一枚棋子.甲先摸,乙后取,然后甲再取,……,取后均不放回,直到有一人取到白棋即終止. 每枚棋子在每一次被摸出的機(jī)會(huì)都是等可能的.用表示取棋子終止時(shí)所需的取棋子的次數(shù).
(1)求隨機(jī)變量的概率分布列和數(shù)學(xué)期望;
(2)求甲取到白棋的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】梯形ABCD頂點(diǎn)B、C在以AD為直徑的圓上,AD=2米,
(1)如圖1,若電熱絲由AB,BC,CD這三部分組成,在AB,CD上每米可輻射1單位熱量,在BC上每米可輻射2單位熱量,請(qǐng)?jiān)O(shè)計(jì)BC的長(zhǎng)度,使得電熱絲輻射的總熱量最大,并求總熱量的最大值;
(2)如圖2,若電熱絲由弧和弦BC這三部分組成,在弧上每米可輻射1單位熱量,在弦BC上每米可輻射2單位熱量,請(qǐng)?jiān)O(shè)計(jì)BC的長(zhǎng)度,使得電熱絲輻射的總熱量最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex(ax+b)(其中e=2.71828…),g(x)=x2+2bx+2,已知它們?cè)趚=0處有相同的切線.
(1)求函數(shù)f(x),g(x)的解析式;
(2)若函數(shù)F(x)=f(x)+g(x)﹣2(ex+x),試判斷函數(shù)F(x)的零點(diǎn)個(gè)數(shù),并說明理由;
(3)若函數(shù)f(x)在[t,t+1](t>﹣3)上的最小值為φ(t),解關(guān)于t的不等式φ(t)≤4e2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為宣傳3月5日學(xué)雷鋒紀(jì)念日,重慶二外在高一,高二年級(jí)中舉行學(xué)雷鋒知識(shí)競(jìng)賽,每年級(jí)出3人組成甲乙兩支代表隊(duì),首輪比賽每人一道必答題,答對(duì)則為本隊(duì)得1分,答錯(cuò)不答都得0分,已知甲隊(duì)3人每人答對(duì)的概率分別為,乙隊(duì)每人答對(duì)的概率都是.設(shè)每人回答正確與否相互之間沒有影響,用表示甲隊(duì)總得分.
(1)求隨機(jī)變量的分布列及其數(shù)學(xué)期望;
(2)求甲隊(duì)和乙隊(duì)得分之和為4的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“現(xiàn)代五項(xiàng)”是由現(xiàn)代奧林匹克之父顧拜旦先生創(chuàng)立的運(yùn)動(dòng)項(xiàng)目,包含射擊、擊劍、游泳、馬術(shù)和越野跑五項(xiàng)運(yùn)動(dòng).已知甲、乙、丙共三人參加“現(xiàn)代五項(xiàng)”.規(guī)定每一項(xiàng)運(yùn)動(dòng)的前三名得分都分別為,,(且),選手最終得分為各項(xiàng)得分之和.已知甲最終得22分,乙和丙最終各得9分,且乙的馬術(shù)比賽獲得了第一名,則游泳比賽的第三名是
A. 甲 B. 乙 C. 丙 D. 乙和丙都有可能
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com