7.用tanα表示$\frac{sinα+cosα}{2sinα-cosα}$,sin2α+sinαcosα+3cos2α.

分析 由條件利用同角三角函數(shù)的基本關(guān)系,可得結(jié)論.

解答 解:$\frac{sinα+cosα}{2sinα-cosα}$=$\frac{tanα+1}{2tanα-1}$,
 sin2α+sinαcosα+3cos2α=$\frac{{sin}^{2}α+sinαcosα+{3cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{tan}^{2}α+tanα+3}{{tan}^{2}α+1}$.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.不等式tanx>a在x∈(-$\frac{π}{4},\frac{π}{2}$)上恒成立,則a的取值范圍(  )
A.a>1B.a≤1C.a<-1D.a≤-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知sina-2cosa=0,求sin2a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=x2-2x+1(x≥1)的反函數(shù)f-1(x)=1+$\sqrt{x}$(x≥0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若f(x)是冪函數(shù)且函數(shù)圖象經(jīng)過點(2,2),g(x)=$\frac{a}{x}$(a>0).
(1)求f(x)的解析式;
(2)若h(x)=f(x)+g(x)在($\sqrt{2}$,+∞)上是單調(diào)增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.證明:方程x5+x-1=0只有一個正根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知a,b∈R,a2+2b2=1,則a-b的最小值為( 。
A.-$\sqrt{5}$B.-$\frac{\sqrt{6}}{2}$C.-$\sqrt{6}$D.-$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求證:$\frac{1-tanα}{1+tana}$=$\frac{1-2sinαcosα}{co{s}^{2}a-si{n}^{2}a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,射線OA、OB分別與x軸成45°角和30°角,過點P(1,0)作直線AB分別與OA、OB交于A、B.
(Ⅰ)當AB的中點為P時,求直線AB的方程;
(Ⅱ)當AB的中點在直線y=$\frac{1}{2}$x上時,求直線AB的方程.

查看答案和解析>>

同步練習冊答案