分析 由線面垂直的性質(zhì)結(jié)合PA⊥平面ABC可得PA⊥BC,再由已知AC⊥BC,結(jié)合線面垂直的判定得到BC⊥平面PAC,由此得到BC⊥AD,再由三視圖中給出的量求得AD⊥PC,即得到AD⊥平面PBC,從而求得AD與平面PBC所成角的大小為$\frac{π}{2}$;把三棱錐D-ABC的體積轉(zhuǎn)化為三棱錐B-ADC的體積,結(jié)合三視圖中的量求得答案.
解答 解:∵PA⊥平面ABC,∴PA⊥BC,
又AC⊥BC,∴BC⊥平面PAC,
∴BC⊥AD.
由三視圖可得,在△PAC中,PA=AC=4,D為PC中點(diǎn),
∴AD⊥PC,
∴AD⊥平面PBC,
即AD與平面PBC所成角的大小為$\frac{π}{2}$;
由三視圖可得BC=4,
又∠ADC=90°,BC⊥平面PAC,
三棱錐D-ABC的體積即為三棱錐B-ADC的體積,
∴所求三棱錐的體積V=$\frac{1}{3}$×$\frac{1}{2}$×$\frac{1}{2}$×4×4×4=$\frac{16}{3}$.
故答案為:$\frac{π}{2}$;$\frac{16}{3}$.
點(diǎn)評(píng) 本小題主要考查空間線面關(guān)系、幾何體的體積等知識(shí),考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 3+2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}-1}{2}$ | B. | $\frac{1+\sqrt{3}}{2}$ | C. | $\frac{2+\sqrt{6}}{2}$ | D. | $\frac{\sqrt{6}-2}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20 | B. | 17 | C. | 16 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+y2-10y=0 | B. | x2+y2+10y=0 | C. | x2+y2+10x=0 | D. | x2+y2-10x=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{11π}{6}$ | D. | $\frac{4π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 40 | B. | 48 | C. | 60 | D. | 68 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com