16.定義在R上的函數(shù)f(x),f′(x)是其導(dǎo)數(shù),且滿足f(x)+f′(x)>2,ef(1)=2e+4,則不等式exf(x)>4+2ex(其中e為自然對(duì)數(shù)的底數(shù))的解集為( 。
A.(1,+∞)B.(-∞,0)∪(1,+∞)C.(-∞,0)∪(0,+∞)D.(-∞,1)

分析 構(gòu)造函數(shù)g(x)=exf(x)-2ex,(x∈R),研究g(x)的單調(diào)性,結(jié)合原函數(shù)的性質(zhì)和函數(shù)值,即可求解.

解答 解:設(shè)g(x)=exf(x)-2ex,(x∈R),
則g′(x)=exf(x)+exf′(x)-2ex=ex[f(x)+f′(x)-2],
∵f(x)+f′(x)>2,
∴f(x)+f′(x)-2>0,
∴g′(x)>0,
∴y=g(x)在定義域上單調(diào)遞增,
∵exf(x)>2ex+4,
∴g(x)>4,
又∵g(1)=ef(1)-2e=4,
∴g(x)>g(1),
∴x>1,
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)單調(diào)性與奇偶性的結(jié)合,結(jié)合已知條件構(gòu)造函數(shù),然后用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性是解題的關(guān)鍵

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2017屆四川巴中市高中高三畢業(yè)班10月零診理數(shù)試卷(解析版) 題型:填空題

正月十六登高是“中國(guó)石刻藝術(shù)之鄉(xiāng)”、“中國(guó)民間文化藝術(shù)之鄉(xiāng)”四川省巴中市沿襲千年的獨(dú)特民俗.登高節(jié)前夕,李大伯在家門前的樹上掛了兩串喜慶彩燈,這兩串彩燈的第一次閃亮相互獨(dú)立,且都在通電后的4秒內(nèi)任一時(shí)刻等可能發(fā)生,然后每串彩燈以4秒為間隔閃亮.那么這兩串彩燈同時(shí)通電后,它們第一次閃亮的時(shí)刻相差不超過(guò)2秒的概率是 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在極坐標(biāo)系中,圓C的極坐標(biāo)方程為:ρ2=4ρ(cosθ+sinθ)-6.若以極點(diǎn)O為原點(diǎn),極軸所在直線為x軸建立平面直角坐標(biāo)系.
(Ⅰ)求圓C的參數(shù)方程;
(Ⅱ)在直角坐標(biāo)系中,點(diǎn)P(x,y)是圓C上動(dòng)點(diǎn),試求x+y的最大值,并求出此時(shí)點(diǎn)P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求值:$C_n^{5-n}+C_{n+1}^{10-n}$=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的離心率為$\sqrt{3}$,拋物線y2=2px(p>0)的準(zhǔn)線與雙曲線C的漸近線交于A,B兩點(diǎn),△OAB(O為坐標(biāo)原點(diǎn))的面積為$4\sqrt{2}$,則拋物線的方程為(  )
A.y2=8xB.y2=4xC.y2=2xD.${y^2}=4\sqrt{3}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知拋物線y2=4x的焦點(diǎn)為F,拋物線的準(zhǔn)線與x軸的交點(diǎn)為P,以坐標(biāo)原點(diǎn)O為圓心,以|OF|長(zhǎng)為半徑的圓,與拋物線在第四象限的交點(diǎn)記為B,∠FPB=θ,則sinθ的值為( 。
A.$\frac{\sqrt{5}-1}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\frac{\sqrt{3}}{2}$-1D.$\frac{\sqrt{5}}{2}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知f(x)=$\left\{\begin{array}{l}{-lnx-x,x>0}\\{-ln(-x)+x,x<0}\end{array}\right.$,則關(guān)于m的不等式f($\frac{1}{m}$)<ln$\frac{1}{2}-2$的解集為( 。
A.(0,$\frac{1}{2}$)B.(0,2)C.(-$\frac{1}{2}$,0)∪(0,$\frac{1}{2}$)D.(-2,0)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.(理科)已知函數(shù)f(x)=-6ln(ax+2)+$\frac{1}{2}$x2在x=2處有極值.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若直線y=kx與函數(shù)f′(x)有交點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在平面直角坐標(biāo)系中,橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),已知(1,e)在橢圓上,其中e為橢圓的離心率.
(I) 求橢圓的方程;
(Ⅱ)設(shè)A,B是橢圓上位于x軸上方的兩點(diǎn),直線AF2與直線BF1交于點(diǎn)P,|PA|:|PF2|=|PF1|:|PB|=3:1,求直線AF1的斜率.

查看答案和解析>>

同步練習(xí)冊(cè)答案