10.設(shè)F1,F(xiàn)2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn),若F2關(guān)于直線y=$\frac{a}$x的對(duì)稱點(diǎn)恰好在雙曲線上,則該雙曲線的離心率是( 。
A.$\sqrt{5}$-1B.$\sqrt{5}$+1C.$\frac{\sqrt{5}}{2}$D.$\sqrt{5}$

分析 設(shè)F2(c,0)關(guān)于直線y=$\frac{a}$x的對(duì)稱點(diǎn)為M(m,n),運(yùn)用中點(diǎn)坐標(biāo)公式和兩直線垂直的條件:斜率之積為-1,列出方程組,解方程組可得M點(diǎn)的坐標(biāo),代入雙曲線的方程,結(jié)合a2+b2=c2,由離心率公式即可得到所求值.

解答 解:設(shè)F2(c,0)關(guān)于直線y=$\frac{a}$x的對(duì)稱點(diǎn)為M(m,n),
可得$\frac{n}{m-c}$=-$\frac{a}$,且$\frac{1}{2}$•n=$\frac{a}$•$\frac{1}{2}$(m+c),
解得m=$\frac{^{2}-{a}^{2}}{c}$,n=$\frac{2ab}{c}$,
即有M($\frac{^{2}-{a}^{2}}{c}$,$\frac{2ab}{c}$),
代入雙曲線的方程可得$\frac{(^{2}-{a}^{2})^{2}}{{c}^{2}{a}^{2}}$-$\frac{4{a}^{2}}{{c}^{2}}$=1,
化簡(jiǎn)可得(b2+a2)(b2-3a2)=a2c2
可得b2-3a2=a2,即b2=4a2,
即有c2=5a2,離心率e=$\frac{c}{a}$=$\sqrt{5}$.
故選:D.

點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單性質(zhì),主要是離心率的求解和對(duì)稱問(wèn)題,注意運(yùn)用中點(diǎn)坐標(biāo)公式和兩直線垂直的條件,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,圓O是△ABC的外接圓,點(diǎn)D是劣弧$\widehat{BC}$的中點(diǎn),連結(jié)AD并延長(zhǎng),與以C為切點(diǎn)的切線交于點(diǎn)P,求證:$\frac{PC}{PA}=\frac{BD}{AC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.與橢圓$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1有相同的焦點(diǎn),且經(jīng)過(guò)點(diǎn)P($\sqrt{2}$,-$\sqrt{2}$)的雙曲線的離心率為( 。
A.3B.$\sqrt{3}$C.$\frac{3}{2}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知雙曲線的方程為x2-$\frac{{y}^{2}}{3}$=1,則該雙曲線的漸近線方程是( 。
A.y=±3xB.y=±$\frac{\sqrt{3}}{3}$xC.y=±$\sqrt{3}$xD.y=±2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知A={(x,y)|ax+by=1},B={(x,y)|x≥0,y≥1,x+y≤2},若A∩B≠∅恒成立,則a2+b2+2a+3b的取值范圍是$[\frac{3}{4},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.雙曲線$\frac{{x}^{2}}{4}$-y2=1的實(shí)軸長(zhǎng)是4,離心率的值是$\frac{\sqrt{5}}{2}$,焦點(diǎn)到漸近線的距離是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.集合A={a1,a2}的子集的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)命題p:?x∈R,x2+x>a,命題q:?x∈R,使x2+2ax+2-a=0
(1)寫出兩個(gè)命題的否定形式¬p和¬q;
(2)若命題(¬p)∨q為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,an=$\frac{{a}_{n-1}}{{a}_{n-1}+1}(n>1)$.
(Ⅰ)求證:數(shù)列{$\frac{1}{{a}_{n}}$}為等差數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)已知數(shù)列{bn}滿足b1=1,b2=2,且bn=b1+a1b2+a2b3+…+an-2bn-1(n>2),判斷2016是否為數(shù)列{bn}中的項(xiàng)?若是,求出相應(yīng)的項(xiàng)數(shù)n,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案