2.已知在直角坐標(biāo)系xOy中,曲線C的方程是(x-2)2+(y-l)2=4,直線l經(jīng)過(guò)點(diǎn)P(3,$\sqrt{3}$),傾斜角為$\frac{π}{6}$,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)寫出曲線C的極坐標(biāo)方程和直線l的參數(shù)方程;
(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求|OA|•|OB|的值.

分析 (I)曲線C的方程是(x-2)2+(y-l)2=4,展開(kāi)把ρ2=x2+y2,x=ρcosθ,y=ρsinθ代入可得極坐標(biāo)方程.由于直線l經(jīng)過(guò)點(diǎn)P(3,$\sqrt{3}$),傾斜角為$\frac{π}{6}$,可得參數(shù)方程:$\left\{\begin{array}{l}{x=3+\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$(t為參數(shù)).
(II)直線l的極坐標(biāo)方程為:$θ=\frac{π}{6}$,代入曲線C的極坐標(biāo)方程可得:${ρ}^{2}-(1+\sqrt{3})ρ$+1=0,利用|OA||OB|=|ρ1ρ2|即可得出.

解答 解(I)曲線C的方程是(x-2)2+(y-l)2=4,
展開(kāi)可得:x2+y2-4x-2y+1=0,
把ρ2=x2+y2,x=ρcosθ,y=ρsinθ代入可得極坐標(biāo)方程ρ2-4ρcosθ-2ρsinθ+1=0.
由于直線l經(jīng)過(guò)點(diǎn)P(3,$\sqrt{3}$),傾斜角為$\frac{π}{6}$,
可得參數(shù)方程:$\left\{\begin{array}{l}{x=3+\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$(t為參數(shù)).
(II)直線l的極坐標(biāo)方程為:$θ=\frac{π}{6}$,
代入曲線C的極坐標(biāo)方程可得:${ρ}^{2}-(1+\sqrt{3})ρ$+1=0,
∴ρ1ρ2=1.
∴|OA||OB|=|ρ1ρ2|=1.

點(diǎn)評(píng) 本題考查了直角坐標(biāo)與極坐標(biāo)的互化、參數(shù)方程、直線與圓相交弦長(zhǎng)問(wèn)題,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如果正實(shí)數(shù)x,y滿足xy+2x+y=4,則3x+2y的最小值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知數(shù)列{an}的前n項(xiàng)和Sn=2n,那么數(shù)列{an}的通項(xiàng)公式an=$\left\{\begin{array}{l}{2,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=acosθ\\ y=bsinθ\end{array}\right.$(a>b>0,θ為參數(shù)).在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2是經(jīng)過(guò)極點(diǎn)的圓,且圓心C2在過(guò)極點(diǎn)且垂直于極軸的直線上.已知曲線C1上的點(diǎn)$A(3\sqrt{3},1)$對(duì)應(yīng)的參數(shù)為$θ=\frac{π}{6}$,曲線C2過(guò)點(diǎn)$B(2,\frac{π}{6})$.
(Ⅰ)求曲線C1及曲線C2的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn)P在曲線上C1,求P,C2兩點(diǎn)間的距離|PC2|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ=2cosθ,過(guò)點(diǎn)P(2,-1)的直線l:$\left\{\begin{array}{l}{x=2+t}\\{y=-1+t}\end{array}\right.$(t為參數(shù))與曲線C交于M、N兩點(diǎn).
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)求|PM|2+|PN|2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.對(duì)于定義在R上的函數(shù)f(x)滿足兩個(gè)條件:①當(dāng)x∈[0,1]時(shí),f(0)=0,f(1)=e,f(x)-f′(x)<0;②ex-1f(x+1)=ex+1f(x-1),e1-xf(x+1)=ex+1f(1-x),若函數(shù)y=f(x)-$\frac{x{e}^{x}}{2016}$零點(diǎn)的個(gè)數(shù)為( 。
A.1008B.2015C.2016D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.求函數(shù)y=lnx+ax的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.求函數(shù)y=2cosx(sinx+cosx)的圖象的對(duì)稱中心和對(duì)稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖所示,AB是⊙O的直徑,點(diǎn)C在⊙O上,CD為⊙O的切線,過(guò)A作CD的垂線,垂足為D,交⊙O于F.
(1)求證:AC為∠DAB的角平分線;
(2)過(guò)C作AB的垂線,垂足為M,若⊙O的直徑為8,且OM:MB=3:1,求DF•AD的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案