14.在數(shù)列{an}中,a1=1,an+1=2an-n+2,n∈N*
(Ⅰ)證明數(shù)列{an-(n-1)}是等比數(shù)列并求數(shù)列{an}的通項(xiàng)an;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)的和Sn

分析 (Ⅰ)an+1=2an-n+2,變形為an+1-n=2[an-(n-1)],利用等比數(shù)列的通項(xiàng)公式即可得出;
(II)分組利用等比數(shù)列與等差數(shù)列的前n項(xiàng)和公式即可得出.

解答 (Ⅰ)證明:∵an+1=2an-n+2,
∴an+1-n=2[an-(n-1)],
∴數(shù)列{an-(n-1)}是以a1-1+1=1為首項(xiàng),以2為公比的等比數(shù)列.
∴an-(n-1)=1×2n-1,
∴an=2n-1+(n-1).
(Ⅱ)解:∵Sn=20+(21+1)+(22+2)+(23+3)+…+(2n-1+n-1)
=(20+21+22+…+2n-1)+(1+2+3+…+n-1)
=$\frac{1×(1-2n)}{1-2}+\frac{n(n-1)}{2}$
=2n-1+$\frac{n(n-1)}{2}$.

點(diǎn)評(píng) 本題考查了等比數(shù)列與等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了變形能力、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)y=f(x)的圖象與g(x)=logax(a>0,且a≠1)的圖象關(guān)于x軸對(duì)稱(chēng),且g(x)的圖象過(guò)(4,2)點(diǎn).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若f(x-1)>f(5-x),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列說(shuō)法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;
②設(shè)有一個(gè)回歸方程y=3-5x,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位;
③線(xiàn)性回歸方程y=bx+a必過(guò)點(diǎn)$({\overline x,\overline y})$;
④曲線(xiàn)上的點(diǎn)與該點(diǎn)的坐標(biāo)之間具有相關(guān)關(guān)系.
其中錯(cuò)誤的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知復(fù)數(shù)z1=2+i,z2=1+2i,則z=$\frac{z_2}{z_1}$在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若復(fù)數(shù)z=(x2-1)+(x-1)i,(x∈R)為純虛數(shù),則|z|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若集合A={x|1<x≤$\sqrt{3}$},B={x|0<x≤1},則A∪B=( 。
A.{x|x>0}B.{x|x≤$\sqrt{3}$}C.{x|0≤x≤$\sqrt{3}$}D.{x|0<x≤$\sqrt{3}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=alnx+x2-1.
(Ⅰ)求曲線(xiàn)y=f(x)在點(diǎn)(1,f(1)處的切線(xiàn)方程;
(Ⅱ)設(shè)g(x)=f(x)-(a+2)(x-1),若a=4時(shí),方程g(x)=b(b∈R)恰有3個(gè)實(shí)數(shù)根,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且滿(mǎn)足bcosA+acosB=2ccosC,c=$\sqrt{3}$;
(1)若A=$\frac{π}{4}$,求邊b的長(zhǎng);
(2)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知兩個(gè)非零向量a,b不共線(xiàn),$\overrightarrow{OA}$=a+b,$\overrightarrow{OB}$=a+2b,$\overrightarrow{OC}$=a+3b.
(1)證明A,B,C三點(diǎn)共線(xiàn);
(2)試確定實(shí)數(shù)k,使ka+b與a+kb共線(xiàn).

查看答案和解析>>

同步練習(xí)冊(cè)答案