分析 (I)通過等差中項、等比中項計算可知公差為1,進而可得結(jié)論;
(II)通過裂項可知bn=2($\frac{1}{n}$-$\frac{1}{n+1}$),并項相加即得結(jié)論.
解答 解:(I)∵a1+a2+a3=6,
∴3a2=6,即a2=2,
∵a1,a2,a4成等比數(shù)列,
∴${a_1}{a_4}={a_2}^2$,
∴(2-d)(2+2d)=22,
解得d=1或d=0(舍),
∴an=n;
(II)∵an=n,
∴Sn=$\frac{n(n+1)}{2}$,
∴bn=$\frac{1}{S_n}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
∴${T_n}=2[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+…+(\frac{1}{n}-\frac{1}{n+1})]=2(1-\frac{1}{n+1})=\frac{2n}{n+1}$.
點評 本題考查數(shù)列的通項及前n項和,考查運算求解能力,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {0,1,2,4} | B. | {0,1,3,4} | C. | {2,4} | D. | {4} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com