1.若雙曲線$E:\frac{x^2}{9}-\frac{y^2}{16}=1$的左、右焦點分別為F1、F2,點P在雙曲線E上,且|PF1|=5,則|PF2|等于(  )
A.1或11B.1C.11D.13

分析 求得雙曲線的a=3,由雙曲線的定義可得||PF1|-|PF2||=2a=6,代入已知條件解方程即可得到所求值.

解答 解:雙曲線$E:\frac{x^2}{9}-\frac{y^2}{16}=1$的a=3,
由雙曲線的定義可得||PF1|-|PF2||=2a=6,
由|PF1|=5,可得|5-|PF2||=6,
解得|PF2|=11(-1舍去).
故選:C.

點評 本題考查雙曲線的定義和方程,考查定義法的運用,以及運算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.二項式(x+$\frac{1}{x}$+2)6的展開式中,含x2項的系數(shù)為495.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,在四棱錐S-ABCD中,所有側(cè)棱長與底面邊長均相等,E為SC的中點.求證:
(Ⅰ) SA∥平面BDE;
(Ⅱ) SC⊥BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,四棱錐P-ABCD的底面為正方形,PA⊥底面ABCD,PA=AD.E,F(xiàn)分別為底邊AB和側(cè)棱PC的中點.
(Ⅰ)求證:EF∥平面PAD;
(Ⅱ)求證:EF⊥FD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.以下有關命題的說法錯誤的是(  )
A.命題“若x2-3x+2=0,則 x=1”的逆否命題為“若x≠1,則 x2-3x+2≠0
B.“x=1”是“x2-3x+2=0”的充分不必要條件
C.若 p∧q為假命題,則p,q均為假命題
D.對于命題 p:?x∈R使得x2+x+1<0,則¬p:?x∈R,均有x2+x+1≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知雙曲線$M:\frac{y^2}{a^2}-\frac{x^2}{b^2}=1({a>0,b>0})$與拋物線$y=\frac{1}{8}{x^2}$有公共焦點F,F(xiàn)到M的一條漸近線的距離為$\sqrt{3}$,則雙曲線方程為(  )
A.$\frac{x^2}{7}-\frac{y^2}{3}=1$B.$\frac{y^2}{3}-\frac{x^3}{7}=1$C.$\frac{x^2}{3}-{y^2}=1$D.${y^2}-\frac{x^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(2a-1)x+a(x<2)}\\{lo{g}_{a}(x-1)(x≥2)}\end{array}\right.$是R上的減函數(shù),則實數(shù)a的取值范圍是( 。
A.[$\frac{1}{3}$,$\frac{1}{2}$)B.[$\frac{2}{5}$,$\frac{1}{2}$)C.[$\frac{2}{5}$,1)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖所示的幾何體中,EA⊥平面ABC,BD⊥平面ABC,AC=BC=BD=2AE=$\frac{{\sqrt{2}}}{2}AB$,M是AB的中點.
(1)求證:CM⊥EM;
(2)求MC與平面EAC所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知數(shù)列{an}、{bn}滿足:an+1=an+1,b${\;}_{n+1}=_{n}+\frac{1}{2}{a}_{n}$,cn=a${\;}_{n}^{2}-4_{n}$,n∈N+;
(1)若a1=1,b1=0,求數(shù)列{an}、{bn}的通項公式;
(2)證明:數(shù)列{cn}是等差數(shù)列;
(3)定義fn(x)=x2+anx+bn,在(1)的條件下,是否存在n,使得fn(x)有兩個整數(shù)零點,如果有,求出n滿足的集合,如果沒有,說明理由.

查看答案和解析>>

同步練習冊答案