A. | g(x)=sin(2x-$\frac{π}{3}$) | B. | g(x)=sin(2x+$\frac{π}{6}$) | C. | g(x)=-sin(2x-$\frac{π}{3}$) | D. | g(x)=sin(4x+$\frac{π}{6}$) |
分析 由函數(shù)的最值求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)f(x)的解析式,再利用y=Asin(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式.
解答 解:由函數(shù)f(x)=Asin(ωx+φ)(其中A>0,|φ|<$\frac{π}{2}$)的圖象,
可得A=1,$\frac{1}{4}•\frac{2π}{ω}$=$\frac{7π}{12}$-$\frac{π}{3}$,求得ω=2.
再根據(jù)五點(diǎn)法作圖可得2•$\frac{π}{3}$+φ=π,∴φ=$\frac{π}{3}$,f(x)=sin(2x+$\frac{π}{3}$).
將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度得到函數(shù)g(x)=sin[2(x+$\frac{π}{6}$)+$\frac{π}{3}$]
=sin(2x+$\frac{2π}{3}$)=sin(-2x+$\frac{π}{3}$)=-sin(2x-$\frac{π}{3}$)的圖象,
故選:C.
點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的最值求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,還考查了y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 在(-∞,2)內(nèi)是減函數(shù) | B. | 在(-∞,4)內(nèi)是減函數(shù) | ||
C. | 在(-∞,0)內(nèi)是減函數(shù) | D. | 在(-∞,+∞)內(nèi)是減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com