14.設(shè)實(shí)數(shù)a、b滿足a<b,則下列各式中,可能不成立的是( 。
A.1-a>1-bB.a2+b2>2abC.|a|<|b|D.(b-a)(a2+b2)>0

分析 根據(jù)不等式的基本性質(zhì)加以判斷即可.

解答 解:∵a<b,
∴-a>-b,
∴1-a>1-b,故A正確;
∵(a-b)2>0,
∴a2+b2-2ab>0,
∴a2+b2>2ab,故B正確,
當(dāng)a=-2,b=1時(shí),|a|>|b|,故C不成立,
∵a<b,
∴b-a>0,
∴(b-a)(a2+b2)>0,故D正確,
故選:C.

點(diǎn)評(píng) 本題考查了不等式的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知拋物線y=x2的焦點(diǎn)為F,過點(diǎn)F的直線與拋物線相交于A,B兩點(diǎn),若|AB|=4,則弦AB的中點(diǎn)到x軸的距離等于$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.當(dāng)x>0時(shí).求y=$\frac{x}{4{x}^{2}+1}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.[普通中學(xué)做]如圖所示,以O(shè)x為始邊作角α與β(0<β<α<π),它們的終邊分別與單位圓相交于點(diǎn)P、Q,已知點(diǎn)Q的橫坐標(biāo)為$\frac{4}{5}$.
(1)求$\frac{1+sin2β}{1+si{n}^{2}β}$的值;
(2)若$\overrightarrow{OP}$•$\overrightarrow{OQ}$=$\frac{1}{2}$,求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=sin(x+$\frac{π}{6}$)+sin(x-$\frac{π}{6}$)+cosx-1.
(1)求使f(x)≥0成立的x的取值集合;
(2)在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,已知A為銳角,a=3$\sqrt{3}$,c=6,f(A)是函數(shù)f(x)在[0,$\frac{π}{2}$]上的最大值,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.以(2$\sqrt{3}$,0)為圓心,截直線y=$\sqrt{3}$x得弦長為8的圓的方程是(x-2$\sqrt{3}$)2+y2=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.秦九韶是我國南宋時(shí)期的數(shù)學(xué)家,他在所著的《數(shù)學(xué)九章》中提出多項(xiàng)式求值的秦九韶算法,如圖所示的程序框圖給出了利用秦九韶算法求多項(xiàng)式值的一個(gè)實(shí)例,依次輸入a為2,2,5,則輸出的s=(  )
A.7B.12C.17D.34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.有根木料長6米,要做一個(gè)如圖的窗框,已知上框架與下框架的高比為1:2,問怎樣利用木料,才能使光線通過窗框面積最大?并求出最大面積.(中間木擋的面積可忽略不計(jì))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)z∈C,且(1-i)z=2i(i是虛數(shù)單位),則|z|=$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案