已知曲線.
(1)求曲線在點()處的切線方程;
(2)若存在使得,求的取值范圍.
(1)y=(a-1)x-1(2)(-∞,0)∪[e,+∞)
解析試題分析:本題主要考查導數(shù)的運算、利用導數(shù)求曲線的切線方程、利用導數(shù)求函數(shù)的單調(diào)性、利用導數(shù)求函數(shù)的最值等基礎(chǔ)知識,考查學生的分析問題解決問題的能力、轉(zhuǎn)化能力和計算能力.第一問,要求切線方程,需求出切點的縱坐標和切線的切率,將代入到中得到切點的縱坐標,將代入到中得到切線的斜率,最后利用點斜式寫出切線的方程;第二問,當時,利用單調(diào)遞增,單調(diào)遞減,求出函數(shù)的最小值,使之大于等于0,當時,通過對的判斷知函數(shù)在R上單調(diào)遞減,而,存在使得成立,綜合上述2種情況,得到結(jié)論.
試題解析:(1)因為,所以切點為(0,-1).,,
所以曲線在點()處的切線方程為:y=(a-1)x-1. -4分
(2)(1)當a>0時,令,則.
因為在上為減函數(shù),
所以在內(nèi),在內(nèi),
所以在內(nèi)是增函數(shù),在內(nèi)是減函數(shù),
所以的最大值為
因為存在使得,所以,所以.
(2)當時,<0恒成立,函數(shù)在R上單調(diào)遞減,
而,即存在使得,所以.
綜上所述,的取值范圍是(-∞,0)∪[e,+∞) 13分
考點:導數(shù)的運算、利用導數(shù)求曲線的切線方程、利用導數(shù)求函數(shù)的單調(diào)性、利用導數(shù)求函數(shù)的最值.
科目:高中數(shù)學 來源: 題型:解答題
已知,函數(shù).
(Ⅰ)當時,
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式在區(qū)間上有解,求的取值范圍;
(Ⅱ)已知曲線在其圖象上的兩點,()處的切線分別為.若直線與平行,試探究點與點的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列的前項和為,且,對任意,都有.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),其中m,a均為實數(shù).
(1)求的極值;
(2)設(shè),若對任意的,恒成立,求的最小值;
(3)設(shè),若對任意給定的,在區(qū)間上總存在,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)
(1)若,求函數(shù)在上的最小值;
(2)若函數(shù)在存在單調(diào)遞增區(qū)間,試求實數(shù)的取值范圍;
(3)求函數(shù)的極值點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=-x3+ax2-4(),是f(x)的導函數(shù).
(1)當a=2時,對任意的求的最小值;
(2)若存在使f(x0)>0,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù),,,記.
(1)求曲線在處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當時,若函數(shù)沒有零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),.
(1)求函數(shù)在上的最小值;
(2)若存在是自然對數(shù)的底數(shù),,使不等式成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com