2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{a}^{x},a>0,x≤0}\end{array}\right.$若f(f($\frac{1}{4}$))=4,則a=(  )
A.$\frac{1}{4}$B.4C.$\frac{1}{2}$D.2

分析 根據(jù)分段函數(shù)的表達式,解方程f(f($\frac{1}{4}$))=4即可.

解答 解:f($\frac{1}{4}$)=log2$\frac{1}{4}$=-2,
則由f(f($\frac{1}{4}$))=4得f(-2)=4,
即a-2=4,則a=$\frac{1}{2}$或a=-$\frac{1}{2}$(舍),
故選:C

點評 本題主要考查函數(shù)值的計算,根據(jù)分段函數(shù)的表達式代入解方程是解決本題的關(guān)鍵.比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=2x3+3x-3,在下列區(qū)間中函數(shù)f(x)一定存在零點的是( 。
A.(-1,0)B.$(0,\frac{1}{2})$C.$(\frac{1}{2},1)$D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.在△ABC中,若A=$\frac{2π}{3}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-2,則△ABC的面積S=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若直線x+2y+1=0與直線ax+y-2=0互相垂直,那么a的值等于( 。
A.-2B.-$\frac{2}{3}$C.-$\frac{1}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.在△ABC中,角A、B、C的對邊分別為a、b、c,a=3,A=45°,B=60°,則b=( 。
A.$\frac{3\sqrt{3}}{2}$B.$\frac{3\sqrt{6}}{2}$C.$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知等差數(shù)列{an},公差為2,的前n項和為Sn,且a1,S2,S4成等比數(shù)列,
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{2}{{a}_{n}•{a}_{n+1}}$(n∈N*),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知f(x)=(a+b-3)x+1,g(x)=ax,其中a,b∈[0,3],求兩個函數(shù)在定義域內(nèi)都為增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,若實數(shù)a滿足f(lga)+f(lg$\frac{1}{a}$)≤2f(1),則a的取值范圍是( 。
A.(-∞,10]B.[$\frac{1}{10}$,10]C.(0,10]D.[$\frac{1}{10}$,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.計算:$\frac{cos2°}{sin47°}$+$\frac{cos88°}{sin133°}$=$\sqrt{2}$.

查看答案和解析>>

同步練習冊答案