分析 (1)根據(jù)f(x)有最大值,即可判斷出a<0,并且$\frac{-4{a}^{2}-1}{4a}=\frac{17}{8}$,解該方程即得a的值,a=$-\frac{1}{8}$,或a=-2;
(2)分別將a的這兩個(gè)值帶人不等式f(x)>1,即可得到兩個(gè)一元二次不等式,分別解這兩個(gè)不等式即得原不等式的解.
解答 解:(1)若a=0,f(x)=x無(wú)最大值;
∴a≠0;
∴f(x)是二次函數(shù),且a<0;
∴f(x)的最大值為$\frac{-4{a}^{2}-1}{4a}=\frac{17}{8}$;
解得a=$-\frac{1}{8}$,或a=-2;
(2)①當(dāng)a=$-\frac{1}{8}$時(shí),f(x)=$-\frac{1}{8}{x}^{2}+x+\frac{1}{8}$;
∴解$-\frac{1}{8}{x}^{2}+x+\frac{1}{8}>1$得,1<x<7;
∴f(x)>1的解集為(1,7);
②當(dāng)a=-2時(shí),f(x)=-2x2+x+2;
∴解-2x2+x+2>1得,$-\frac{1}{2}<x<1$;
∴f(x)>1的解集為(-$\frac{1}{2}$,1).
點(diǎn)評(píng) 考查二次函數(shù)在定義域R上的最大值,以及計(jì)算二次函數(shù)最大值的公式,解一元二次不等式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2sin α-2cos α+2 | B. | sin α-$\sqrt{3}$cos α+3 | C. | 3sin α-$\sqrt{3}$cos α+1 | D. | 2sin α-cos α+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,1)∪(2,+∞) | B. | (2,+∞) | C. | (-2,1) | D. | (-∞,-2)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com