4.已知復(fù)數(shù)z1=(1+bi)(2+i),z2=3+(1-a)i(a,b∈R,i為虛數(shù)單位).
(Ⅰ)若z1=z2,求實(shí)數(shù)a,b的值;
(Ⅱ)若b=1,a=0,求|${\frac{{{z_1}+\overline{z_2}}}{1-2i}}$|.

分析 (Ⅰ)利用復(fù)數(shù)的乘法,以及z1=z2,列出方程組,求實(shí)數(shù)a,b的值;
(Ⅱ)通過b=1,a=0,真假代入|${\frac{{{z_1}+\overline{z_2}}}{1-2i}}$|,求解即可.

解答 解:(Ⅰ)復(fù)數(shù)z1=(1+bi)(2+i)=2-b+(2b+1)i,z2=3+(1-a)i.
z1=z2,可得:$\left\{\begin{array}{l}{2-b=3}\\{2b+1=1-a}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=2}\\{b=-1}\end{array}\right.$,實(shí)數(shù)a=2,b=-1;
(Ⅱ)若b=1,a=0,z1=1+3i,z2=3+i.
|${\frac{{{z_1}+\overline{z_2}}}{1-2i}}$|=$\frac{|1+3i+3-i|}{|1-2i|}$=$\frac{\sqrt{{4}^{2}+{2}^{2}}}{\sqrt{1+{(-2)}^{2}}}$=2.

點(diǎn)評 本題考查復(fù)數(shù)的相等的充要條件,復(fù)數(shù)的模的求法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知圓O:x2+y2=1與x軸負(fù)半軸的交點(diǎn)為A,P為直線3x+4y-a=0上一點(diǎn),過P作圓O的切線,切點(diǎn)為T,若PA=2PT,則a的最大值為$\frac{23}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.一緝私艇發(fā)現(xiàn)在方位角45°方向,距離12海里的海面上有一走私船正以10海里/小時(shí)的速度沿方位角為105°方向逃竄,若緝私艇的速度為14海里/小時(shí),緝私艇沿方位角45°+α的方向追去,若要在最短的時(shí)間內(nèi)追上該走私船,求追及所需時(shí)間和α角的正弦.(注:方位角是指正北方向按順時(shí)針方向旋轉(zhuǎn)形成的角).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.閱讀程序框圖,回答以下問題:
(1)該程序框圖表達(dá)的函數(shù)解析式是什么?
(2)若要使輸入的x值與輸出的y值相等,則這樣的x有幾個(gè),并分別寫出來;
(3)根據(jù)程序框圖,寫出相應(yīng)的程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,在四棱錐P-ABCD中,底面ABCD是邊長為a的正方形,PA⊥平面ABCD.若PA=a,則直線PB與平面PCD所成的角的大小為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.1-2sin2$\frac{π}{8}$的值等于(  )
A.0B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列說法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變; 
②設(shè)有一個(gè)回歸方程$\widehat{y}$=3-5x,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位
③線性回歸方程$\widehat{y}$=bx+a必過($\overline{x}$,$\overline{y}$);
④在線性回歸模型中,若R2≈0.64,則表示預(yù)報(bào)變量大約有64%是由解釋變量引起的;
其中錯(cuò)誤的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.將51轉(zhuǎn)化為二進(jìn)制數(shù)得110110(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.七個(gè)人排成一排.
(1)甲、乙、丙排在一起,共有多少種排法?
(2)甲、乙相鄰,且丙、丁相鄰,有多少種排法?
(3)甲、乙、丙排在一起,且都不在兩端,有多少種排法?
(4)甲、乙、丙排在一起,且甲在兩端,有多少種排法?
(5)甲、乙之間恰有2人的排法有多少?
(6)甲、乙之間是丙的排法有多少?

查看答案和解析>>

同步練習(xí)冊答案