12.已知圓錐的底面半徑為r,母線長為l,設(shè)計一個求該圓錐體積的算法,并畫出程序框圖.

分析 先寫出算法,再由算法寫出程序框圖.

解答 解:算法如下:
第一步,輸入r、l
第二步,h=$\sqrt{{l}^{2}-{r}^{2}}$
第三步,S=πr2
第四步,V=1/3 Sh
第五步,輸出V
程序框圖如下:

點評 此題要熟記圓錐體積公式,主要考察設(shè)計程序框圖解決實際問題,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,角A、B、C所對的邊分別為a、b、c.若a=1,$\frac{sinB}{sinC}$=$\frac{1}{2}$+$\frac{cosC}{c}$,則A=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.三角形ABC中,sinBcosC=1+cosBsinC,三角形ABC的形狀為鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知正方體ABCD-A1B1C1D1的棱長為2,點E、F分別是棱BC、CC1的中點,Q是側(cè)面BCC1B1內(nèi)一點,若A1Q∥平面AEF,則點Q的軌跡為(  )
A.一個點B.兩個點C.一條線段D.兩條線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知程序框圖如圖所示.
(1)指出該程序框圖的算法功能;
(2)寫出該程序框圖所對應(yīng)的程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.?dāng)?shù)列{an}滿足a1+2a2+3a3+…+nan=(n-1)2n+1,n∈N*
(1)求a3的值;
(2)若對n∈N*,bn=$\frac{1}{{a}_{n}}$,求數(shù)列{bn}的通項公式bn和前n項和Tn;
(3)令c1=b1,cn=$\frac{{T}_{n-1}}{n}$+(1+$\frac{1}{2}$+$\frac{1}{3}$…+$\frac{1}{n}$)bn(n≥2)證明:數(shù)列{cn}的前n項和Sn滿足Sn<2+2lnn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知A(-3,8),B(2,2),在x軸上有一點M,使|AM|+|BM|的值最小,則點M的坐標(biāo)是(1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.某幾何體的三視圖如圖所示,且該幾何體的頂點都在球O的球面上,則球O的表面積為$\frac{28π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.定義a⊕b=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$.若f(x)=cosx⊕($\frac{\sqrt{2}}{2}$tanx)(-$\frac{π}{2}$<x<$\frac{π}{2}$).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若方程f(x)-$\frac{1}{sinα}$=0有解,求實數(shù)α的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案