11.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a4=10,S3=12,則數(shù)列{an}的首項(xiàng)a1=1,通項(xiàng)an=3n-2.

分析 設(shè)出等差數(shù)列的首項(xiàng)和公差,由已知列方程組求得首項(xiàng)和公差,代入等差數(shù)列的通項(xiàng)公式得答案.

解答 解:設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,
由a4=10,S3=12,得$\left\{\begin{array}{l}{{a}_{1}+3d=10}\\{3{a}_{1}+3d=12}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=3}\end{array}\right.$.
∴an=1+3(n-1)=3n-2.
故答案為:1,3n-2.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式,考查了等差數(shù)列的前n項(xiàng)和,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立坐標(biāo)系.已知點(diǎn)A的極坐標(biāo)為($\sqrt{2}$,$\frac{π}{4}$),直線的極坐標(biāo)方程為ρcos(θ-$\frac{π}{4}$)=a,且點(diǎn)A在直線上.
(1)求a的值及直線的直角坐標(biāo)方程;
(2)圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),試判斷直線與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知矩陣M=$[\begin{array}{l}{2}&{1}\\{1}&{2}\end{array}]$,β=$[\begin{array}{l}{3}\\{5}\end{array}]$,計(jì)算M2β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.袋中有5個(gè)球,其中有彩色球2個(gè).甲、乙二人先后依次從袋中取球,每次取后不放回,規(guī)定先取出彩色球者獲勝.則甲獲勝的概率為$\frac{3}{5}$.(以整數(shù)比作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知正數(shù)x,y滿足xy+x+2y=6,則xy的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.二次函數(shù)y=kx2(x>0)的圖象在點(diǎn)(an,an2)處的切線與x軸交點(diǎn)的橫坐標(biāo)為an+1,n為正整數(shù),a1=$\frac{1}{3}$,若數(shù)列{an}的前n項(xiàng)和為Sn,則S5=( 。
A.$\frac{3}{2}[{1-{{({\frac{1}{3}})}^5}}]$B.$\frac{1}{3}[{1-{{({\frac{1}{3}})}^5}}]$C.$\frac{2}{3}[{1-{{({\frac{1}{2}})}^5}}]$D.$\frac{3}{2}[{1-{{({\frac{1}{2}})}^5}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,向量$\overrightarrow{m}$=(2sin$\frac{A}{2}$,cosA),$\overrightarrow{n}$=(1-2sin2$\frac{A}{4}$,-$\sqrt{15}$),且$\overrightarrow{m}$⊥$\overrightarrow{n}$
(Ⅰ)求角A的余弦值;
(Ⅱ)若a=$\sqrt{6}$,求△ABC的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA⊥底面ABCD,AC=2$\sqrt{2}$,PA=2,$\overrightarrow{PE}$=2$\overrightarrow{EC}$.
(Ⅰ)證明:PC⊥平面BED;
(Ⅱ)若直線PD與平面PBC所成角為$\frac{π}{6}$,求二面角A-PB-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)向量$\overrightarrow m$=(sin2ωx,cos2ωx),$\overrightarrow n$=(cosφ,sinφ),其中|φ|<$\frac{π}{2}$,ω>0,函數(shù)f(x)=$\overrightarrow m•\overrightarrow n$的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)(即函數(shù)取得最大值的點(diǎn))為$P(\frac{π}{6},1)$,在原點(diǎn)右側(cè)與x軸的第一個(gè)交點(diǎn)為$Q(\frac{5π}{12},0)$.
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)在△ABC中,角A′B′C的對(duì)邊分別是a′b′c′若f(C)=-1,$\overrightarrow{CA}•\overrightarrow{CB}=-\frac{3}{2}$,且a+b=2$\sqrt{3}$,求邊長(zhǎng)c.

查看答案和解析>>

同步練習(xí)冊(cè)答案