7.給出如下命題,其中真命題的序號是①③
①“函數(shù)f(x)=cos2ax-sin2ax的最小正周期為π”是“a=1”的必要不充分條件
②“x2+2x≥ax在x∈[1,2]上恒成立”?“(x2+2x)min≥axmax在x∈[1,2]上恒成立”
③設(shè)x>0,則“a≥1”是“z+$\frac{a}{x}$≥2恒成立”的充要條件
④“平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角是鈍角”的充要條件是“$\overrightarrow{a}•\overrightarrow$<0”

分析 ①利用充分、必要條件的概念與二倍角的余弦及余弦函數(shù)的周期性可判斷①的正誤;
②利用函數(shù)恒成立問題可判斷②的正誤;
③利用基本不等式可得結(jié)論;
④“平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角是鈍角”的充要條件是“$\overrightarrow{a}•\overrightarrow$<0且平面向量$\overrightarrow{a}$與$\overrightarrow$不反向”.

解答 解:①函數(shù)f(x)=cos2ax-sin2ax=cos2ax的最小正周期為π,則 $\frac{2π}{2|a|}$=π,|a|=1,
解得:a=±1,故充分性不成立;反之,若a=1,則f(x)=cos2x-sin2x=cos2x的最小正周期為π,必要性成立;
故函數(shù)f(x)=cos2ax-sin2ax的最小正周期為π是“a=1”的必要不充分條件,即①正確;
②∵不等式x2+2x≥ax的右端含有參數(shù)a,
∴x2+2x≥ax在x∈[1,2]上恒成立不等價于(x2+2x)min≥(ax)max在x∈[1,2]上恒成立,即②錯誤.
③設(shè)x>0,利用基本不等式可得“a≥1”是“x+$\frac{a}{x}$≥2恒成立”的充要條件,正確;
④“平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角是鈍角”的充要條件是“$\overrightarrow{a}•\overrightarrow$<0且平面向量$\overrightarrow{a}$與$\overrightarrow$不反向”,不正確.
故答案為:①③.

點評 本題考查命題的真假判斷與應用,著重考查平面向量知識、充分、必要條件的概念及三角函數(shù)的性質(zhì)與函數(shù)恒成立問題,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

17.定義“等和數(shù)列”:在一個數(shù)列中,如果每一項與它的后一項的和都為同一個常數(shù),那么這個數(shù)列叫做等和數(shù)列,且a1=2,公和為5,那么a18的值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知f(x)=x+$\frac{x}$在(1,e)上為增函數(shù),則實數(shù)b的取值范圍是( 。
A.(-∞,1]∪[e2,+∞)B.(-∞,0]∪[e2,+∞)C.(-∞,1]D.[1,e2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設(shè)A={x|x2-8x+15=0},B={x|ax-1=0},若A∩B=B,則實數(shù)a組成的集合是$\{0,\frac{1}{3},\frac{1}{5}\}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若集合A={x|x=$\frac{n}{3}$,n∈Z},B={x|x=n±$\frac{1}{3}$,n∈Z},C={x|x=n±$\frac{2}{3}$,n∈Z},則下列結(jié)論中正確的是(  )
A.B≠CB.A?BC.A?B=CD.A?C

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若圓C:x2+y2-$2\sqrt{2}$x-$2\sqrt{2}$y-12=0上有四個不同的點到直線l:x-y+c=0的距離為2,則c的取值范圍是( 。
A.[-2,2]B.[-2$\sqrt{2}$,2$\sqrt{2}$]C.(-2,2)D.(-2$\sqrt{2}$,2$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρ=4sinθ.
(I)寫出直線l的普通方程和曲線C2的直角坐標方程;
(II)直線l與曲線C2交于A、B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=x3+ax.
(Ⅰ)當x=1時,f(x)=x3+ax有極小值,求a的值;
(Ⅱ)若過點P(1,1)只有一條直線與曲線y=f(x)相切,求a的取值范圍;
(Ⅲ)在(Ⅰ)的條件下,判斷過點A(0,3),B(2,0),C(-2,-2)分別存在幾條直線與曲線y=f(x)相切.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.某高中學校共有學生1800名,各年級男女學生人數(shù)如表.已知在全校學生中隨機抽取1名,抽到高二女生的概率是0.16.
高一年級高二年級高三年級
女生324x280
男生316312y
現(xiàn)用分層抽樣的方法,在全校抽取45名學生,則應在高三抽取的學生人數(shù)為14.

查看答案和解析>>

同步練習冊答案