12.若圓C:x2+y2-$2\sqrt{2}$x-$2\sqrt{2}$y-12=0上有四個不同的點到直線l:x-y+c=0的距離為2,則c的取值范圍是( 。
A.[-2,2]B.[-2$\sqrt{2}$,2$\sqrt{2}$]C.(-2,2)D.(-2$\sqrt{2}$,2$\sqrt{2}$)

分析 配方可得圓的半徑r=4,由于圓上有四個不同的點到直線l:x-y+c=0的距離為2,可得:圓心到直線l的距離d=<2,解出即可得出.

解答 解:圓C:x2+y2-$2\sqrt{2}$x-$2\sqrt{2}$y-12=0,配方為:$(x-\sqrt{2})^{2}+(y-\sqrt{2})^{2}$=16,
∵圓上有四個不同的點到直線l:x-y+c=0的距離為2,
∴圓心到直線l的距離d=$\frac{|c|}{\sqrt{2}}$<2,
解得$-2\sqrt{2}$<c$<2\sqrt{2}$,
故選:D.

點評 本題考查了直線與圓的位置關(guān)系、點到直線的距離公式、不等式的解法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在梯形ABCD中,AB∥DC,AD⊥AB,AD=DC=1,AB=2,點P,Q分別在線段BC,CD上運動,且$\overrightarrow{DQ}$=λ$\overrightarrow{DC}$,$\overrightarrow{CP}$=(1-λ)$\overrightarrow{CB}$.
(1)當λ=$\frac{1}{2}$時,求|$\overrightarrow{AP}$|;
(2)求$\overrightarrow{AP}$•$\overrightarrow{AQ}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)的定義域為[-2,2],且滿足:f(x+y)=f(x)+f(y).
(1)求f(0)的值;
(2)判斷f(x)的奇偶性;
(3)若f(x)為單調(diào)函數(shù),且f(1)>0,f(-1)=-1,解不等式:f(2x)+f(x2-2)>-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)f(x)=sinx-acosx圖象的一條對稱軸為x=$\frac{3}{4}$π,記函數(shù)f(x)的兩個極值點分別為x1,x2,則|x1+x2|的最小值為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.給出如下命題,其中真命題的序號是①③
①“函數(shù)f(x)=cos2ax-sin2ax的最小正周期為π”是“a=1”的必要不充分條件
②“x2+2x≥ax在x∈[1,2]上恒成立”?“(x2+2x)min≥axmax在x∈[1,2]上恒成立”
③設(shè)x>0,則“a≥1”是“z+$\frac{a}{x}$≥2恒成立”的充要條件
④“平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角是鈍角”的充要條件是“$\overrightarrow{a}•\overrightarrow$<0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.甲、乙兩人組成“火星隊”參加投籃游戲,每輪游戲中甲、乙各投一次,如果兩人都投中,則“火星隊”得4分;如果只有一人投中,則“火星隊”得2分;如果兩人都沒投中,則“火星隊”得0分.已知甲每次投中的概率為$\frac{4}{5}$,乙每次投中的概率為$\frac{3}{4}$;每輪游戲中甲、乙投中與否互不影響,假設(shè)“火星隊”參加兩輪游戲,求:
(I)“火星隊”至少投中3個球的概率;
(II)“火星隊”兩輪游戲得分之和X的分布列和數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設(shè)等差數(shù)列{an}的前n項和為Sn且滿足a1013=S2013=2013則$\frac{S_1}{a_1}$,$\frac{S_2}{a_2}$,$\frac{S_3}{a_3}$,…,$\frac{{{S_{15}}}}{{{a_{15}}}}$中最大的項為(  )
A.$\frac{S_6}{a_6}$B.$\frac{S_7}{a_7}$C.$\frac{S_8}{a_8}$D.$\frac{S_9}{a_9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.關(guān)于x的不等式xlnx-kx>3對任意x>1恒成立,則整數(shù)k的最大為(  )
A.-1B.-2C.-3D.-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知向量$\overrightarrow{a}$=(3,-2)則|$\overrightarrow{a}$|=( 。
A.$\sqrt{5}$B.2$\sqrt{3}$C.$\sqrt{13}$D.5

查看答案和解析>>

同步練習冊答案