16.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+tcosα}\\{y=2+tsinα}\end{array}\right.$(t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位),且以原點O為極點,以x軸非負半軸為極軸)中,圓C的方程為ρ=6sinθ.
(1)求圓C的直角坐標方程;
(2)若點P(1,2),設(shè)圓C與直線l交于點A,B,求|PA|+|PB|的最小值.

分析 (I)利用x=ρcosθ,y=ρsinθ可將圓C極坐標方程化為直角坐標方程;
(II)先根據(jù)(I)得出圓C的普通方程,再根據(jù)直線與交與交于A,B兩點,可以把直線與曲線聯(lián)立方程,用根與系數(shù)關(guān)系結(jié)合直線參數(shù)方程的幾何意義,表示出|PA|+|PB|,最后根據(jù)三角函數(shù)的性質(zhì),即可得到求解最小值.

解答 解:(Ⅰ)由ρ=6sinθ得ρ2=6ρsinθ,
化為直角坐標方程為x2+y2=6y,
即x2+(y-3)2=9.
(Ⅱ)將l的參數(shù)方程代入圓C的直角坐標方程,
得t2+2(cosα-sinα)t-7=0.
由△=(2cosα-2sinα)2+4×7>0,
故可設(shè)t1,t2是上述方程的兩根,
所以$\left\{\begin{array}{l}{{t}_{1}+{t}_{1}=-2(cosα-sinα)}\\{{t}_{1}•{t}_{2}=-7}\end{array}\right.$,
又直線l過點(1,2),
故結(jié)合t的幾何意義得|PA|+|PB|=|t1|+|t2|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$
=$\sqrt{4(cosα-sinα)^{2}+28}$=$\sqrt{32-4sin2α}$$≥\sqrt{32-4}$=2$\sqrt{7}$.
所以|PA|+|PB|的最小值為2$\sqrt{7}$.

點評 此題主要考查參數(shù)方程的優(yōu)越性,及直線與曲線相交的問題,在此類問題中一般可用聯(lián)立方程式后用韋達定理求解即可,屬于綜合性試題有一定的難度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=\frac{2}{x}-kx+5lnx-2n(n∈{N^*},k∈R)$的一個極值點2,
(1)求函數(shù)f(x)在點(1,f(1))處的切線l的方程;
(2)若數(shù)列{an}滿足a3=15,且對任意的n∈N*且n≥2,點(an,an-1)均在切線l上,證明:$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}<\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在平面直角坐標系xOy中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρ2cso2θ+ρ2-8ρsinθ=0,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=2+\sqrt{3}t}\end{array}\right.$.
(1)將曲線C1的極坐標方程化為直角坐標方程;
(2)曲線C1與C2相交于A,B兩點,若P(0,2),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.2017年某公司舉辦產(chǎn)品創(chuàng)新大賽,經(jīng)評委會初評,有兩個優(yōu)秀方案(編號分別為1,2)入選,組委會決定請車間100名經(jīng)驗豐富的技工對兩個方案進行等級(等級從高到低依次為A、B、C、D、E)評價,評價結(jié)果統(tǒng)計如表:
ABCDE
1號1535ab10
2號733202bc
(1)若從對1號創(chuàng)新方案評價為C、D的技工中按分層抽樣的方法抽取4人,其中從評價為C的技工中抽取了3人,求a,b,c的值;
(2)若從兩個創(chuàng)新方案評價為C、D的評價表中各抽取10%進行分析,再從中選取2份進行詳細研究,求選出的2份評價表中至少有1份評價為D的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=2sinxsin(x+\frac{π}{6})$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)$x∈[{0,\frac{π}{2}}]$時,求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知角α的終邊過點P(-4,3),則2sinα的值是( 。
A.$\frac{3}{5}$B.$-\frac{4}{5}$C.$-\frac{8}{5}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知△ABC中,AC=2,A=120°,$cosB=\sqrt{3}sinC$.
(Ⅰ)求邊AB的長;
(Ⅱ)設(shè)(3,4)是BC邊上一點,且△ACD的面積為$\frac{{3\sqrt{3}}}{4}$,求∠ADC的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下面程序運行后,輸出的值是( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={x|x2+2x-3≤0,x∈Z},集合B={x|lnx<2},則A∩B=(  )
A.{0}B.{1}C.{0,1}D.

查看答案和解析>>

同步練習(xí)冊答案