設(shè)f:A→B是從A到B的一個(gè)映射,其中A=B={(x,y)|x∈R,y∈R},f:(x,y)→(x+y,xy),則A中(1,-2)的象是
 
,B中(1,-2)的原象是
 
考點(diǎn):映射
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)對(duì)應(yīng)法則和象、原象的坐標(biāo),即可得出結(jié)論.
解答: 解:由R到R的映射f:(x,y)→(x+y,xy),
x=1,y=-2,則x+y=-1,xy=-2,∴A中(1,-2)的象是(-1,-2);
設(shè)(1,-2)的原象是(x,y)
則x+y=1,xy=-2
解得:x=2,y=-1,或x=-1,y=2
故(1,-2)的原象是(2,-1)和(-1,2)
故答案為:(-1,-2);(2,-1)和(-1,2).
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是映射的概念,其中根據(jù)對(duì)應(yīng)法則和象的坐標(biāo),構(gòu)造方程組是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某縣職工運(yùn)動(dòng)會(huì)將在本縣一中運(yùn)動(dòng)場(chǎng)隆重召開,為了搞好接待工作,執(zhí)委會(huì)在一中招募了12名男性志愿者和18名女性志愿者,調(diào)查發(fā)現(xiàn),這30名志愿者的身高如圖:(單位:cm)
若身高在175cm以上(包括175cm)定義為“高個(gè)子”,身高在175cm以下(不包括我,175cm)定義為“非高個(gè)子”,且只有“女高個(gè)子”才能擔(dān)任“禮儀小姐”
(1)應(yīng)用你所學(xué)的獨(dú)立性檢驗(yàn)的知識(shí)判斷是否有95%的把握認(rèn)為“高個(gè)子”于性別有關(guān).
參考公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥ke0.100.050.010.005
ke2.7063.8416.6357.879
(2)用分層抽樣的方法從“高個(gè)子”中共抽取6人,若從這6個(gè)人中選2人,則他們至少有一人能擔(dān)任禮儀小姐的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算與化簡(jiǎn)
(1)(0.008)-
2
3
÷(0.02)-
1
2
×(0.32)
1
2

(2)
a
4
3
-8a
1
3
b
a
2
3
+2
3ab
+4b
2
3
÷[(1-2
3
b
a
)×
3a
].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域是(0,+∞),且滿足f(xy)=f(x)+f(y),f(
1
2
)=1
若對(duì)于x1、x2∈(0,+∞),都有 
x1-x2
f(x1)-f(x2)
<0.
(1)求f(1),f(2);
(2)解不等式f(-x)+f(2-x)≥-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
x2-2x+2m-1
的定義域?yàn)镽,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的定義域?yàn)镽,f(-2)=2013,對(duì)任意x∈R都有f′(x)<2x成立,則不等式f(x)<x2+2009的解集是( 。
A、(-2,2)
B、(-2,+∞)
C、(-∞,-2)
D、(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)求
sin40°-
3
cos20°
cos10°
的值.
(Ⅱ)已知6sin2x+sinxcosx-2cos2x=0,π<x<
2
,試求sin2x-cos2x+tan2x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)為R上的可導(dǎo)函數(shù),且?x∈R,均有f(x)>f′(x),則有( 。
A、e2013f(-2013)<f(0),f(2013)>e2013f(0)
B、e2013f(-2013)<f(0),f(2013)<e2013f(0)
C、e2013f(-2013)>f(0),f(2013)>e2013f(0)
D、e2013f(-2013)>f(0),f(2013)<e2013f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求直線(2m-1)x-(m+3)y-(m-11)=0恒過(guò)定點(diǎn)的坐標(biāo)
 

查看答案和解析>>

同步練習(xí)冊(cè)答案