等差數(shù)列{an}中,已知a3=5,a2+a5=12,an=29,則n為
 
考點:等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:設(shè)出等差數(shù)列的公差,由已知求得公差,然后代入等差數(shù)列的通項公式得答案.
解答: 解:在等差數(shù)列{an}中,設(shè)公差為d,
由a2+a5=12,得2a3+d=12,
又a3=5,
∴d=2.
由an=a3+(n-3)d=5+2(n-3)=29,
解得n=15.
故答案為:15.
點評:本題考查了等差數(shù)列的通項公式,考查了等差數(shù)列的性質(zhì),是基礎(chǔ)的計算題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的奇數(shù)項是首項為1的等差數(shù)列,偶數(shù)項是首項為2的等比數(shù)列.?dāng)?shù)列{an}前n項和為Sn,且滿足S5=2a4+a5,a9=a3+a4
(1)求數(shù)列{an}的通項公式;
(2)若amam+1=am+2,求正整數(shù)m的值;
(3)是否存在正整數(shù)m,使得
S2m
S2m-1
恰好為數(shù)列{an}中的一項?若存在,求出所有滿足條件的m值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+cx+1的導(dǎo)函數(shù)為f′(x),y=f′(x)的圖象如圖所示
(1)請寫出f(x)單調(diào)區(qū)間;
(2)若a=1,試求函數(shù)f(x)的解析式,并求出函數(shù)f(x)的極值及取極值時的相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
3x+5,x≤-1
2x2+1,-1<x<1
5x-2,x≥1
,若f(x)=2,則x的值是( 。
A、-1
B、-1或
4
5
C、±
2
2
D、-1或±
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中與函數(shù)y=x相等的有幾個?( 。
(1)y=(
x
) 
2(2)y=
3x3
(3)y=
x2
(4)y=
x2
x
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)m,n,x,y滿足m2+n2=1,x2+y2=4,則my+nx的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
x2+1,x≥0
-x+1,x<0
,則f(f(-1))的值為(  )
A、0B、1C、-5D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
3-x
+
1
x2-x-6
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={y|x+y=2},N={(x,y)|x-y=4},那么集合M∩N為( 。
A、{x=3,y=-1}
B、{(x,y)|x=3或y=-1}
C、∅
D、{(3,-1)}

查看答案和解析>>

同步練習(xí)冊答案