分析 (1)設公比為q,由已知得:$\left\{\begin{array}{l}{{a}_{1}(1+q)=\frac{2}{{a}_{1}}(1+\frac{1}{q})}\\{{a}_{1}{q}^{2}(1+q+{q}^{2})=\frac{64}{{a}_{1}{q}^{2}}(1+\frac{1}{q}+\frac{1}{{q}^{2}})}\end{array}\right.$,化簡解出即可得出.
(2)bn=$\frac{1}{{a}_{n}}$=$\frac{1}{{2}^{n-1}}$,再利用等比數(shù)列的前n項和公式即可得出.
解答 解:(1)設公比為q,則an=${a}_{1}{q}^{n-1}$.
由已知得:$\left\{\begin{array}{l}{{a}_{1}(1+q)=\frac{2}{{a}_{1}}(1+\frac{1}{q})}\\{{a}_{1}{q}^{2}(1+q+{q}^{2})=\frac{64}{{a}_{1}{q}^{2}}(1+\frac{1}{q}+\frac{1}{{q}^{2}})}\end{array}\right.$,
化簡得$\left\{\begin{array}{l}{{a}_{1}^{2}q=2}\\{{a}_{1}^{2}{q}^{6}=64}\end{array}\right.$,又a1>0,
解得q=2,a1=1.
∴an=2n-1.
(2)bn=$\frac{1}{{a}_{n}}$=$\frac{1}{{2}^{n-1}}$,
∴數(shù)列{bn}的前n項和Tn=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$=2-$\frac{2}{{2}^{n}}$.
點評 本題考查了等比數(shù)列的通項公式及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\frac{4}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
到班級宣傳 | 整理、打包衣物 | 總計 | |
男生 | 12 | 12 | 24 |
女生 | 8 | 18 | 26 |
總計 | 20 | 30 | 50 |
P(X2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-$\sqrt{2}$,-1) | B. | (-∞,-$\frac{1}{2}$) | C. | (-$\sqrt{2}$,-$\frac{1}{2}$) | D. | (-∞,-1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (x-2)2+(y-$\frac{3}{2}$)2=$\frac{5}{4}$ | B. | (x+2)2+(y-$\frac{3}{2}$)2=$\frac{5}{4}$ | C. | (x+2)2+(y+$\frac{3}{2}$)2=$\frac{5}{4}$ | D. | (x-2)2+(y+$\frac{3}{2}$)2=$\frac{5}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com