2.下列判斷不正確的是( 。
A.若ξ-B(4,0.25),則Eξ=1
B.命題“?x∈R,x2≥0”的否定是“?x0∈R,x02<0”
C.從勻速傳遞的產(chǎn)品生產(chǎn)線上,檢查人員每隔5分鐘從中抽出一件產(chǎn)品檢查,這樣的抽樣是系統(tǒng)抽樣
D.10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)分別是15,17,14,10,15,17,17,16,14,12,這組數(shù)據(jù)的中位數(shù)與眾數(shù)相等

分析 根據(jù)統(tǒng)計和命題的相關(guān)知識,逐一分析給定四個答案的真假,可得答案.

解答 解:A中,若ξ-B(4,0.25),則Eξ=4×0.25=1”,故正確;
B中,命題“?x∈R,x2≥0”的否定是“?x0∈R,x02<0”,故正確;
從勻速傳遞的產(chǎn)品生產(chǎn)線上,檢查人員每隔5分鐘從中抽出一件產(chǎn)品檢查,這樣的抽樣是系統(tǒng)抽樣,故正確;
10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)分別是15,17,14,10,15,17,17,16,14,12,這組數(shù)據(jù)的中位數(shù)為15,眾數(shù)為17,兩者不等,故錯誤,
故選:D

點評 本題以命題的真假判斷為載體,考查了二項分布,全稱(特稱)命題的判定,抽樣方法,中位數(shù)與眾數(shù)等知識點,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.對任意兩個非零的平面向量$\overrightarrow a$和$\overrightarrow b$,定義$\overrightarrow a*\overrightarrow b=\frac{\overrightarrow a•\overrightarrow b}{\overrightarrow b•\overrightarrow b}$;若平面向量$\overrightarrow{a}$,$\overrightarrow$滿足$|{\overrightarrow a}|>|{\overrightarrow b}|>0$,$\overrightarrow{a}$與$\overrightarrow$的夾角θ∈(0,$\frac{π}{4}$),且$\overrightarrow a*\overrightarrow b,\overrightarrow b*\overrightarrow a$都在集合{$\frac{n}{2}$|n∈Z}中,則$\overrightarrow a*\overrightarrow b$=(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若sin20°=a,則sin230°的值為( 。
A.2a2-1B.1-a2C.a2-1D.1-2a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,⊙O是△ABC的外接圓,D是$\widehat{AC}$的中點,BD交AC于E.
(Ⅰ)若DE=2,BE=4,試求DC的值;
(Ⅱ)在(Ⅰ)的條件下,O到AC的距離為1,求⊙O的半徑r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如果對于函數(shù)f(x)定義域內(nèi)任意的兩個自變量的值x1,x2,當(dāng)x1<x2時,都有f(x1)≤f(x2),且存在兩個不相等的自變量值y1,y2,使得f(y1)=f(y2),就稱f(x)為定義域上的不嚴(yán)格的增函數(shù).
則 ①$f(x)=\left\{\begin{array}{l}x,x≥1\\ 0,-1<x<1\\ x,x≤-1\end{array}\right.$,②$f(x)=\left\{\begin{array}{l}1,\;x=-\frac{π}{2}\\ sinx,-\frac{π}{2}<x≤\frac{π}{2}\end{array}\right.$,
③$f(x)=\left\{\begin{array}{l}1,x≥1\\ 0,-1<x<1\\-1,x≤-1\end{array}\right.$,④$f(x)=\left\{\begin{array}{l}x,\;x≥1\\ x+1,x<1\end{array}\right.$,
四個函數(shù)中為不嚴(yán)格增函數(shù)的是①③,若已知函數(shù)g(x)的定義域、值域分別為A、B,A={1,2,3},B⊆A,且g(x)為定義域A上的不嚴(yán)格的增函數(shù),那么這樣的g(x)有9個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=e2x,g(x)=lnx+$\frac{1}{2}$,對?a∈R,?b∈(0,+∞),使得f(a)=g(b),則b-a的最小值為(  )
A.$1+\frac{ln2}{2}$B.$1-\frac{ln2}{2}$C.$2\sqrt{e}-1$D.$\sqrt{e}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若a=$\frac{l{n}^{2}6}{4}$,b=ln2ln3,c=$\frac{l{n}^{2}2π}{4}$,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.a<b<cC.c>a>bD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)O是△ABC的外心,a、b、c分別為△ABC內(nèi)角A、B、C的對邊,且b2-2b+c2=0,則$\overrightarrow{BC}$•$\overrightarrow{AO}$的取值范圍是[-$\frac{1}{4}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若執(zhí)行如圖所示的程序框圖后,輸出的結(jié)果是-29,則判斷框中的整數(shù)k的值是5.

查看答案和解析>>

同步練習(xí)冊答案