4.已知F1(-3,0),F(xiàn)2(3,0),動(dòng)點(diǎn)M滿足|MF1|+|MF2|=5,則點(diǎn)M的軌跡是( 。
A.雙曲線B.橢圓C.線段D.不存在

分析 直接由橢圓的定義得答案.

解答 解:∵F1(-3,0),F(xiàn)2(3,0),
∴|F1F2|=6,
又|MF1|+|MF2|=5<6,
∴點(diǎn)M的軌跡不存在.
故選:D.

點(diǎn)評(píng) 本題考查橢圓的定義,關(guān)鍵是對橢圓定義的理解,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.以下關(guān)于x(x≥0)的不等式ln(x+1)+kx2-x≥0的結(jié)論中錯(cuò)誤的是(  )?
A.$?k≤\frac{1}{4}$,使不等式恒成立B.$?k≥\frac{1}{4}$,使不等式恒成立
C.$?k≤\frac{1}{2}$,使不等式恒成立D.$?k≥\frac{1}{2}$,使不等式恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.甲、乙兩廠生產(chǎn)的一批零件尺寸服從N(5,0.12),如果零件尺寸在(μ-3σ,μ+3σ)以外,我們就有理由認(rèn)為生產(chǎn)中可能出現(xiàn)了異常情況.現(xiàn)從甲、乙兩廠各抽取10件零件檢測,尺寸如莖葉圖所示:則以下判斷正確的是( 。
A.甲、乙兩廠生產(chǎn)都出現(xiàn)異常B.甲、乙兩廠生產(chǎn)都正常
C.甲廠生產(chǎn)正常,乙廠出現(xiàn)異常D.甲廠生產(chǎn)出現(xiàn)異常,乙廠正常

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=|x+1|+|x-2|
(Ⅰ)求f(x)的最小值,并求出f(x)取最小值時(shí)x的取值范圍;
(Ⅱ)若不等式f(x)≤a(x+1)的解集為空集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.為了了解學(xué)生參加體育鍛煉的情況,現(xiàn)抽取了n名學(xué)生進(jìn)行調(diào)查,結(jié)果顯示這些學(xué)生每月的鍛煉時(shí)間(單位:小時(shí))都在[10,50],其中鍛煉時(shí)間在[30,50]的學(xué)生有134人,頻率分布直方圖如圖所示,則n=(  )
A.150B.160C.180D.200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)$f(x)=\left\{\begin{array}{l}{log_a}x,x>2\\-{x^2}+2x-2,x≤2\end{array}\right.$(a>0,a≠1)的值域是(-∞,-1],則實(shí)數(shù)a的取值范圍是[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知點(diǎn)C是線段AB上一點(diǎn),$\overrightarrow{AC}$=2$\overrightarrow{CB}$,$\frac{\overrightarrow{MA}•\overrightarrow{MC}}{|\overrightarrow{MA}|}$=$\frac{\overrightarrow{MB}•\overrightarrow{MC}}{|\overrightarrow{MB}|}$,則$\frac{\overrightarrow{MA}•\overrightarrow{MB}}{|AB{|}^{2}}$的最小值為-$\frac{2}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖是某樣本數(shù)據(jù)的莖葉圖,則該樣本的中位數(shù)、眾數(shù)、極差分別是(  )
A.32 34 32B.33 45 35C.34 45 32D.33 36 35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}滿足$\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}$=2,且a1=$\frac{1}{2},n∈{N_+}$.
(Ⅰ)設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,若數(shù)列{bn}滿足bn=$\left\{\begin{array}{l}\frac{1}{{\sqrt{n-1}+\sqrt{n+1}}}({n=2k-1})\\{a_{\frac{n}{2}}}{a_{\frac{n}{2}+1}}({n=2k})\end{array}\right.({k∈{N_+}})$,求S64;
(Ⅱ)設(shè)Tn=$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{a_n}$,是否存在常數(shù)c,使$\left\{{\frac{T_n}{n+c}}\right\}$為等差數(shù)列,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案