2.已知角α的終邊經(jīng)過點(diǎn)($\frac{3}{5}$,-$\frac{4}{5}$),則α是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

分析 由題意利用任意角的三角函數(shù)的定義,得出結(jié)論.

解答 解:知角α的終邊經(jīng)過點(diǎn)($\frac{3}{5}$,-$\frac{4}{5}$),而點(diǎn)($\frac{3}{5}$,-$\frac{4}{5}$)在第四象限,
則α為第四象限角,
故選:D.

點(diǎn)評 本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點(diǎn)F(1,0),過點(diǎn)F的直線l與橢圓交于C,D兩點(diǎn),且點(diǎn)C到焦點(diǎn)的最大距離與最小距離之比為3.
(Ⅰ)求橢圓的方程;
(Ⅱ)若CD與x軸垂直.A、B是橢圓上位于直線CD兩側(cè)的動點(diǎn),滿足∠ACD=∠BCD,則直線AB的斜率是否為定值?若是,請求出該定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|x+1|+|x+2|
(Ⅰ)解不等式:f(x)≤5
(Ⅱ)若對任意的x∈R,f(x)≥a2-2a恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在△ABC中,∠C為直角,AC=BC=4,沿△ABC的中位線DE,將平面ADE折起,使得∠ADC=90°,得到四棱錐A-BCDE.
(1)求證;BC⊥平面ACD;
(2)求E到面ABC的距離;
(3)M是棱CD的中點(diǎn),過M作平行于平面ABC的截面,畫出該截面,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知點(diǎn)P(2,1),直線l:x-y-4=0,則點(diǎn)P到直線l的距離為$\frac{3\sqrt{2}}{2}$,點(diǎn)P關(guān)于直線l對稱點(diǎn)的坐標(biāo)為(5,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知△ABC的三個(gè)頂點(diǎn)分別是A(4,0),B(0,-2),C(-2,1)
(Ⅰ)求AB邊上的高CD所在的直線方程
(Ⅱ)求過點(diǎn)C且在兩坐標(biāo)軸上的截距相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.“x>1”是“${log_{\frac{1}{2}}}(x+2)<0$”的( 。l件.
A.充要B.必要不充分
C.充分不必要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知x,y的取值如表所示:
x23456
y97865
如果y與x呈線性相關(guān),且線性回歸方程為$\widehat{y}$=-$\frac{3}{4}$x+$\widehat$,則$\widehat$=( 。
A.$\frac{21}{2}$B.10C.11D.$\frac{43}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在極坐標(biāo)系中,直線θ=$\frac{π}{6}$(ρ∈R)截圓ρ=2cos(θ-$\frac{π}{6}$)所得弦長是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案