A. | [$\frac{16-5\sqrt{7}}{9}$,$\frac{16+5\sqrt{7}}{9}$) | B. | ($\frac{16-5\sqrt{7}}{9}$,$\frac{16+5\sqrt{7}}{9}$) | C. | [$\frac{16-5\sqrt{7}}{9}$,$\frac{16+5\sqrt{7}}{9}$] | D. | ($\frac{16-5\sqrt{7}}{9}$,$\frac{16+5\sqrt{7}}{9}$] |
分析 由冪函數(shù)求出定點(diǎn)坐標(biāo),把定點(diǎn)坐標(biāo)代入直線和圓的方程,求出a的取值范圍,從而求出$\frac{a}$的取值范圍.
解答 解:∵當(dāng)x+1=0,即x=-1時(shí),y=f(x)=mx+1+2=1+2=3,
∴函數(shù)f(x)的圖象恒過(guò)一個(gè)定點(diǎn)(-1,3);
又直線3ax-by+15=0過(guò)定點(diǎn)(-1,3),
∴a+b=5①;
又定點(diǎn)(-1,3)在圓(x-a+1)2+(y+b-3)2=16的內(nèi)部或圓上,
∴(-1-a+1)2+(3+b-3)2≤16,
即a2+b2≤16②;
由①②得,$\frac{5-\sqrt{7}}{2}$≤b≤$\frac{5+\sqrt{7}}{2}$,
∴$\frac{2}{5+\sqrt{7}}$≤$\frac{1}$≤$\frac{2}{5-\sqrt{7}}$,
∴$\frac{a}$=$\frac{5}$-1∈[$\frac{16-5\sqrt{7}}{9}$,$\frac{16+5\sqrt{7}}{9}$]
故選:C.
點(diǎn)評(píng) 本題考查了直線與圓的方程以及函數(shù)與不等式的應(yīng)用問(wèn)題,是一道簡(jiǎn)單的綜合試題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | $\frac{π^2}{9}-\frac{1}{2}$ | C. | $\frac{{2{π^2}}}{9}-1$ | D. | $\frac{{2{π^2}}}{9}+1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{14}$ | B. | 2$\sqrt{3}$ | C. | 4$\sqrt{6}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com