(本小題14分)已知函數(shù)的定義域為,且滿足條件:
①,②③當
1)、求的值
2)、討論函數(shù)的單調(diào)性;
3)、求滿足的x的取值范圍。
1)f(1)=0 ; 2)f(x)在(0,+∞)上是增函數(shù);3).
【解析】本試題主要是考查了函數(shù)的賦值法的運用,以及函數(shù)單調(diào)性的證明以及運用單調(diào)性解不等式的運用。
(1)令x=y=1, 得f(1)= f (1)+ f(1)故 f(1)=0,得到結(jié)論。
(2)在①中令,然后利用單調(diào)性得到函數(shù)是定義域內(nèi)的增函數(shù),
(3)由
,由由2)知,f(x)在(0,+∞)上是增函數(shù),得到關(guān)于x的不等式,求解得到。
1)在①中令x=y=1, 得f(1)= f (1)+ f(1)故 f(1)=0 ……2分
2)在①中令……4分
先討論上的單調(diào)性, 任取x1 x2,設(shè)x2>x1>0,
……分
,由③知:>0,∴f(x2)>f(x1),
∴f(x)在(0,+∞)上是增函數(shù),……8分
3)由 ……9分
, ……11分
又由2)知,f(x)在(0,+∞)上是增函數(shù),故得:
解得. ……14分
科目:高中數(shù)學 來源:2012-2013學年北京市高三第四次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題14分)
已知等比數(shù)列滿足,且是,的等差中項.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若,,求使 成立的正整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年四川省成都市高新區(qū)高三2月月考理科數(shù)學試卷(解析版 題型:解答題
(本小題14分)已知函數(shù),設(shè)。
(Ⅰ)求F(x)的單調(diào)區(qū)間;
(Ⅱ)若以圖象上任意一點為切點的切線的斜率 恒成立,求實數(shù)的最小值。
(Ⅲ)是否存在實數(shù),使得函數(shù)的圖象與的圖象恰好有四個不同的交點?若存在,求出的取值范圍,若不存在,說名理由。
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年陜西省高三上學期月考理科數(shù)學 題型:解答題
(本小題14分)已知函數(shù)的圖像與函數(shù)的圖像關(guān)于點
對稱
(1)求函數(shù)的解析式;
(2)若,在區(qū)間上的值不小于6,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年四川省高三2月月考數(shù)學理卷 題型:解答題
(本小題14分)
已知函數(shù)的圖像在[a,b]上連續(xù)不斷,定義:
,,其中表示函數(shù)在D上的最小值,表示函數(shù)在D上的最大值,若存在最小正整數(shù)k,使得對任意的成立,則稱函數(shù)為上的“k階收縮函數(shù)”
(1)若,試寫出,的表達式;
(2)已知函數(shù)試判斷是否為[-1,4]上的“k階收縮函數(shù)”,
如果是,求出對應的k,如果不是,請說明理由;
已知,函數(shù)是[0,b]上的2階收縮函數(shù),求b的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com