16.(1)已知$f(1+\frac{1}{x})=\frac{1}{x^2}$-1,求f(x)的解析式.
(2)已知f(x)是二次函數(shù),且滿足f(2)=4,f(-3)=4,且f(x)的最小值為2,求f(x)的解析式.

分析 (1)令t=$1+\frac{1}{x}$,t≠1,則x=$\frac{1}{t-1}$,利用換法法,先求出f(t),進(jìn)而可得f(x)的解析式.
(2)由已知可得f(x)的圖象關(guān)于直線x=-$\frac{1}{2}$對(duì)稱,結(jié)合f(x)的最小值為2,可設(shè)出函數(shù)的頂點(diǎn)式方程,求出a值后,可得答案.

解答 解:(1)令t=$1+\frac{1}{x}$,t≠1,則x=$\frac{1}{t-1}$,
∵$f(1+\frac{1}{x})=\frac{1}{x^2}$-1,
∴$f(t)=\frac{1}{{(\frac{1}{t-1})}^{2}}-1$=t2-2t,
∴f(x)=x2-2x,x≠1,
(2)∵f(x)是二次函數(shù),且滿足f(2)=4,f(-3)=4,
故f(x)的圖象關(guān)于直線x=-$\frac{1}{2}$對(duì)稱,
又∵f(x)的最小值為2,
∴設(shè)f(x)=a(x+$\frac{1}{2}$)2+2,(a>0),
則f(2)=a(2+$\frac{1}{2}$)2+2=4,
解得:a=$\frac{8}{25}$,
∴f(x)=$\frac{8}{25}$(x+$\frac{1}{2}$)2+2=$\frac{8}{25}$x2+$\frac{8}{25}$x+$\frac{52}{25}$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是換元法求函數(shù)解析式,待定系數(shù)法求函數(shù)解析式,二次函數(shù)的圖象圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{{p{x^2}+1}}{x+q}$是奇函數(shù),且f(2)=$\frac{5}{2}$.
(1)求實(shí)數(shù)p,q的值;
(2)判斷f(x)在[1,+∞)上的單調(diào)性,并證明你的結(jié)論;
(3)若對(duì)任意的t≥1,試比較f(t2-t+1)與f(2t2-t)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.過點(diǎn)P(1,2)的直線l與圓C:x2+(y-1)2=4交于A,B兩點(diǎn),當(dāng)∠ACB最小時(shí),直線L的方程為( 。
A.2x-y=0B.x-y+1=0C.x+y-3=0D.x=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知⊙O的圓心為原點(diǎn),與直線3x+4y-15=0相切,⊙M的方程為(x-3)2+(y-4)2=1,過⊙M上任一點(diǎn)P作⊙O的切線PA,切點(diǎn)為A,若直線PA與⊙M的另一交點(diǎn)為Q,當(dāng)弦PQ最大時(shí),則PA的直線方程為x=3或7x-24y+75=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知數(shù)列{an}的通項(xiàng)公式是an=n2+kn+2,若對(duì)所有的n∈N*,都有an+1>an成立,則實(shí)數(shù)k的取值范圍是( 。
A.(0,+∞)B.(-1,+∞)C.(-2,+∞)D.(-3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知點(diǎn)P為△ABC所在平面內(nèi)一點(diǎn),且滿足$\overrightarrow{AP}$=λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|cosB}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|cosC}$)(λ∈R),則直線AP必經(jīng)過△ABC的( 。
A.重心B.內(nèi)心C.垂心D.外心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.將一個(gè)質(zhì)地均勻的正四面體的四個(gè)面上分別寫上數(shù)字0,-1,1,2,現(xiàn)隨機(jī)先后拋擲兩次,四面體面朝下的數(shù)字分別為a,b.
(1)求使直線ax+by-1=0的傾斜角是銳角的概率;
(2)求使直線ax+by-1=0不平行于x軸且不經(jīng)過第一象限的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓O:x2+y2=2,直線l:y=kx-2.
(1)若直線l與圓O交于不同的兩點(diǎn)A,B,當(dāng)∠AOB=$\frac{π}{2}$時(shí),求k的值.
(2)若EF、GH為圓O:x2+y2=2的兩條相互垂直的弦,垂足為M(1,$\frac{\sqrt{2}}{2}$),求四邊形EGFH的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}滿足a1+2a2+3a3+…+nan=n(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)令bn=anan+2(n∈N*),Tn=b1+b2+…+bn,求證:Tn<$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案