已知橢圓C1: +=1(a>b>0)的右頂點(diǎn)為A(1,0),過C1的焦點(diǎn)且垂直長(zhǎng)軸的弦長(zhǎng)為1.

(1)求橢圓C1的方程;

(2)設(shè)點(diǎn)P在拋物線C2:y=x2+h(h∈R)上,C2在點(diǎn)P處的切線與C1交于點(diǎn)M,N.當(dāng)線段AP的中點(diǎn)與MN的中點(diǎn)的橫坐標(biāo)相等時(shí),求h的最小值.


解:(1)由題意,得

從而

因此,所求的橢圓方程為+x2=1.

(2)設(shè)M(x1,y1),N(x2,y2),

P(t,t2+h),

則拋物線C2在點(diǎn)P處的切線斜率為

y′|x=t=2t,

直線MN的方程為:

y=2tx-t2+h.

將上式代入橢圓C1的方程中,

得4x2+(2tx-t2+h)2-4=0,

即4(1+t2)x2-4t(t2-h)x+(t2-h)2-4=0.①

因?yàn)橹本MN與橢圓C1有兩個(gè)不同的交點(diǎn),

所以①式中的

Δ1=16[-t4+2(h+2)t2-h2+4]>0.②

設(shè)線段MN的中點(diǎn)的橫坐標(biāo)是x3,

則x3==.

設(shè)線段PA的中點(diǎn)的橫坐標(biāo)是x4,

則x4=.

由題意,得x3=x4,

即t2+(1+h)t+1=0.③

由③式中的

Δ2=(1+h)2-4≥0,

得h≥1或h≤-3.

當(dāng)h≤-3時(shí),h+2<0,4-h2<0,

則不等式②不成立,

所以h≥1.

當(dāng)h=1時(shí),代入方程③得t=-1,

將h=1,t=-1代入不等式②,檢驗(yàn)成立.

所以h的最小值為1.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


雙曲線-=1的兩條漸近線的方程為    . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知橢圓C: +=1(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.

(1)求橢圓C的方程;

(2)當(dāng)△AMN的面積為時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知橢圓C: +=1(a>0,b>0)的右焦點(diǎn)為F(3,0),且點(diǎn)(-3, )在橢圓C上,則橢圓C的標(biāo)準(zhǔn)方程為    . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知雙曲線-=1(a>0,b>0)和橢圓+=1有相同的焦點(diǎn),且雙曲線的離心率是橢圓離心率的兩倍,則雙曲線的方程為    . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知雙曲線-=1(a>0,b>0)的左頂點(diǎn)與拋物線y2=2px(p>0)的焦點(diǎn)的距離為4,且雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點(diǎn)坐標(biāo)為(-2,-1),則雙曲線的焦距為(  )

(A)2 (B)2 (C)4 (D)4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


如圖,橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,離心率e=,過左焦點(diǎn)F1作x軸的垂線交橢圓于A、A′兩點(diǎn), =4.

(1)求該橢圓的標(biāo)準(zhǔn)方程;

(2)取平行于y軸的直線與橢圓相交于不同的兩點(diǎn)P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點(diǎn)均在圓Q外.求△PP′Q的面積S的最大值,并寫出對(duì)應(yīng)的圓Q的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知橢圓C1的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為F1(-2,0),F2(2,0),點(diǎn)A(2,3)在橢圓C1上,過點(diǎn)A的直線L與拋物線C2:x2=4y交于B,C兩點(diǎn),拋物線C2在點(diǎn)B,C處的切線分別為l1,l2,且l1與l2交于點(diǎn)P.

(1)求橢圓C1的方程;

(2)是否存在滿足|PF1|+|PF2|=|AF1|+|AF2|的點(diǎn)P?若存在,指出這樣的點(diǎn)P有幾個(gè)(不必求出點(diǎn)P的坐標(biāo));若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


甲、乙兩人下棋,和棋的概率為,乙獲勝的概率為,則下列說法正確的是(  )

A.甲獲勝的概率是                     B.甲不輸?shù)母怕适?sub>

C.乙輸了的概率是                     D.乙不輸?shù)母怕适?sub>

查看答案和解析>>

同步練習(xí)冊(cè)答案