已知橢圓C: +=1(a>0,b>0)的右焦點為F(3,0),且點(-3, )在橢圓C上,則橢圓C的標準方程為    . 


+=1解析:左焦點為(-3,0),

∴2a=+

=6,

∴a=3,b2=18-9=9.

∴橢圓標準方程為+=1.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:


中心在原點,焦點在x軸上的雙曲線的一條漸近線經(jīng)過點(4,-2),則它的離心率為(  )

(A) (B) (C) (D)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知橢圓C: +=1(a>b>0)的左焦點為F,C與過原點的直線相交于A,B兩點,連接AF,BF.若|AB|=10,|BF|=8,cos∠ABF=,則C的離心率為(  )

(A)   (B)   (C)   (D)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知橢圓+=1的兩個焦點是F1、F2,點P在該橢圓上,若|PF1|-|PF2|=2,則△PF1F2的面積是    . 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知左焦點為F(-1,0)的橢圓過點E(1,).過點P(1,1)分別作斜率為k1,k2的橢圓的動弦AB,CD,設(shè)M,N分別為線段AB,CD的中點.

(1)求橢圓的標準方程;

(2)若P為線段AB的中點,求k1;

(3)若k1+k2=1,求證直線MN恒過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


如圖所示,中心均為原點O的雙曲線與橢圓有公共焦點,M、N是雙曲線的兩頂點.若M,O,N將橢圓長軸四等分,則雙曲線與橢圓的離心率的比值是(  )

 (A)3   (B)2           (C)   (D)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知橢圓C1: +=1(a>b>0)的右頂點為A(1,0),過C1的焦點且垂直長軸的弦長為1.

(1)求橢圓C1的方程;

(2)設(shè)點P在拋物線C2:y=x2+h(h∈R)上,C2在點P處的切線與C1交于點M,N.當線段AP的中點與MN的中點的橫坐標相等時,求h的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


過橢圓+=1(a>b>0)的焦點垂直于x軸的弦長為,則雙曲線-=1的離心率e的值是(  )

(A)   (B)

(C)   (D)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


設(shè)(x1,y1),(x2,y2),…,(xnyn)是變量xyn個樣本點,直線l是由這些樣本點通過最小二乘法得到的線性回歸方程(如圖),以下結(jié)論中正確的是(  )

A.xy正相關(guān)

B.xy的相關(guān)系數(shù)為直線l的斜率

C.xy的相關(guān)系數(shù)在-1到0之間

D.當n為偶數(shù)時,分布在l兩側(cè)的樣本點的個數(shù)一定相同

查看答案和解析>>

同步練習冊答案