2.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$=(1,2),|$\overrightarrow$|=5,$\overrightarrow{a}•\overrightarrow$=5,則$\overrightarrow{a}$,$\overrightarrow$的夾角為θ,則cosθ=(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{\sqrt{10}}{5}$D.$\frac{\sqrt{15}}{5}$

分析 根據(jù)向量的夾角公式計(jì)算即可.

解答 解:向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$=(1,2),|$\overrightarrow$|=5,$\overrightarrow{a}•\overrightarrow$=5,
∴|$\overrightarrow{a}$|=$\sqrt{5}$,
∴cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=$\frac{5}{5×\sqrt{5}}$=$\frac{\sqrt{5}}{5}$,
故選:A.

點(diǎn)評(píng) 本題考查了向量的夾角公式,以及向量模,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若函數(shù)y=cos2ωx(ω>0)的最小正周期是π,則ω=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.如圖所示,在△ABC中,F(xiàn)C=2BF,AC=4AE,BC=3,AC=4,∠ACB=60°,則$\overrightarrow{BE}$•$\overrightarrow{FE}$=$\frac{15}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是兩個(gè)互相垂直的單位向量,且$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow$=$\overrightarrow{{e}_{2}}$,則|$\overrightarrow{a}$+2$\overrightarrow$|=( 。
A.2$\sqrt{2}$B.$\sqrt{5}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.過(guò)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的焦點(diǎn)且垂直于實(shí)軸的直線交雙曲線的漸近線于A,B兩點(diǎn),已知|AB|等于虛軸長(zhǎng)的兩倍,則該雙曲線的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知變量x,y滿足$\left\{\begin{array}{l}{x-2y+4≥0}\\{x≤2}\\{x+y-2≥0}\end{array}\right.$,則$\frac{x+y}{x+2}$的最大值為$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一條漸近線與直線3x+$\sqrt{6}$y+3=0垂直,以C的右焦點(diǎn)F為圓心的圓(x-c)2+y2=2與它的漸近線相切,則雙曲線的焦距為( 。
A.4B.2C.$\sqrt{5}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知圓C經(jīng)過(guò)A(5,1),B(1,3)兩點(diǎn),圓心在x軸上,則圓C的方程為( 。
A.(x-2)2+y2=$\sqrt{10}$B.(x+2)2+y2=10C.(x+2)2+y2=$\sqrt{10}$D.(x-2)2+y2=10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.化簡(jiǎn)$\frac{1+sin8θ-cos8θ}{1+sin8θ+cos8θ}$等于(  )
A.tan2θB.cot4θC.tan4θD.cot2θ

查看答案和解析>>

同步練習(xí)冊(cè)答案