10.下列四個(gè)結(jié)論:
①若p∧q是真命題,則¬p可能是真命題;
②命題“?x0∈R,x02-x0-1<0”的否定是“?x∈R,x2-x-1≥0”;
③“a>5且b>-5”是“a+b>0”的充要條件;
④當(dāng)a<0時(shí),冪函數(shù)y=xa在區(qū)間(0,+∞)上單調(diào)遞減.
其中正確結(jié)論的個(gè)數(shù)是( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

分析 ①根據(jù)復(fù)合命題真假關(guān)系進(jìn)行判斷
②根據(jù)含有量詞的命題的否定進(jìn)行判斷
③根據(jù)充分條件和必要條件的定義進(jìn)行判斷
④根據(jù)冪函數(shù)單調(diào)性的性質(zhì)進(jìn)行判斷

解答 解:①若p∧q是真命題,則p,q都是真命題,則¬p一定是假命題,故①錯(cuò)誤;
②命題“?x0∈R,x02-x0-1<0”的否定是“?x∈R,x2-x-1≥0”,故②錯(cuò)誤;
③當(dāng)a>5且b>-5時(shí),a+b>0,即充分性成立,
當(dāng)a=2,b=1時(shí),滿足a+b>0,但a>5且b>-5不成立,即③“a>5且b>-5”是“a+b>0”的充充分不必要條件,故③錯(cuò)誤;
④當(dāng)a<0時(shí),冪函數(shù)y=xa在區(qū)間(0,+∞)上單調(diào)遞減.故④正確,
故正確結(jié)論的個(gè)數(shù)是1個(gè),
故選:B.

點(diǎn)評(píng) 本題主要考查命題的真假判斷,涉及復(fù)合命題真假關(guān)系,充分條件和必要條件的判斷以及含有量詞的命題的否定,綜合性較強(qiáng),但難度不大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知數(shù)列{an}滿足a1=1,a2=2,an+2-an=1+(-1)n,則數(shù)列{an}的前30項(xiàng)的和為255.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某企業(yè)2014年年底給全部的800名員工共發(fā)放2000萬(wàn)元年終獎(jiǎng),該企業(yè)計(jì)劃從2015年起,10年內(nèi)每年發(fā)放的年終獎(jiǎng)都比上一年增加60萬(wàn)元,企業(yè)員工每年凈增a人.
(1)若a=10,在10年內(nèi),該企業(yè)的人均年終獎(jiǎng)是否會(huì)超過(guò)3萬(wàn)元?
(2)這10年內(nèi)為使人均年終獎(jiǎng)年年有增長(zhǎng),該企業(yè)每年員工的凈增量不能超過(guò)多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列四個(gè)說(shuō)法:
①若向量{$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$}是空間的一個(gè)基底,則{$\overrightarrow{a}$+$\overrightarrow$、$\overrightarrow{a}$-$\overrightarrow$、$\overrightarrow{c}$}也是空間的一個(gè)基底.
②空間的任意兩個(gè)向量都是共面向量.
③若兩條不同直線l,m的方向向量分別是$\overrightarrow{a}$、$\overrightarrow$,則l∥m?$\overrightarrow{a}$∥$\overrightarrow$.
④若兩個(gè)不同平面α,β的法向量分別是$\overrightarrow{u}$、$\overrightarrow{v}$,且$\overrightarrow{u}$=(1,2,-2)、$\overrightarrow{v}$=(-2,-4,4),則α∥β.
其中正確的說(shuō)法的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在股票買賣過(guò)程中,經(jīng)常用兩種曲線來(lái)描述價(jià)格變化情況:一種是即時(shí)價(jià)格曲線y=f(x),另一種是平均價(jià)格曲線y=g(x),如f(3)=4表示開始交易后第3小時(shí)的即時(shí)價(jià)格為4元;g(3)=2表示開始交易后三個(gè)小時(shí)內(nèi)所有成交股票的平均價(jià)格為2元.下面給出四個(gè)圖象,實(shí)線表示y=f(x),虛線表示y=g(x),其中可能正確的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知sinα=-$\frac{2}{3}$,且α∈(-$\frac{π}{2}$,0),則tan(2π-α)的值為( 。
A.-$\frac{2\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.±$\frac{2\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知向量$\overrightarrow{a}$=(cosα,sinβ),$\overrightarrow$=(sinα,cosβ),若$\overrightarrow{a}$∥$\overrightarrow$,則α,β的值可以是( 。
A.α=$\frac{π}{3}$,β=-$\frac{π}{3}$B.α=$\frac{π}{3}$,β=$\frac{2π}{3}$C.α=$\frac{π}{5}$,β=-$\frac{7π}{10}$D.α=$\frac{π}{3}$,β=-$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.定義域?yàn)镈的函數(shù)f(x)同時(shí)滿足條件:①常數(shù)a,b滿足a<b,區(qū)間[a,b]⊆D,②使f(x)在[a,b]上的值域?yàn)閇at,bt](t∈N+),那么我們把f(x)叫做[a,b]上的“t級(jí)矩形”函數(shù),函數(shù)f(x)=x3是[a,b]上的“2級(jí)矩形”函數(shù),則滿足條件的常數(shù)對(duì)(a,b)共有( 。
A.1對(duì)B.2對(duì)C.3對(duì)D.4對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知復(fù)數(shù)z1滿足z1(1-i)=2(i為虛數(shù)單位),若復(fù)數(shù)z2滿足z1+z2是純虛數(shù),z1•z2是實(shí)數(shù),求復(fù)數(shù)z2

查看答案和解析>>

同步練習(xí)冊(cè)答案