A. | ($\frac{ln2}{2}$,$\frac{1}{e}$) | B. | ($\frac{ln2}{8}$,$\frac{1}{4e}$) | C. | ($\frac{ln2}{8}$,$\frac{1}{2e}$) | D. | ($\frac{ln2}{8}$,$\frac{ln2}{4}$) |
分析 化簡f(x)=$\left\{\begin{array}{l}{lnx,1≤x<4}\\{ln\frac{x}{4},4≤x<16}\end{array}\right.$,作函數(shù)的圖象,結(jié)合函數(shù)圖象可得.
解答 解:∵f(x)=f(4x),且當(dāng)x∈[1,4)時,f(x)=lnx;
∴f(x)=$\left\{\begin{array}{l}{lnx,1≤x<4}\\{ln\frac{x}{4},4≤x<16}\end{array}\right.$;
作函數(shù)f(x)=$\left\{\begin{array}{l}{lnx,1≤x<4}\\{ln\frac{x}{4},4≤x<16}\end{array}\right.$與函數(shù)y=ax的圖象如下,
結(jié)合圖象可知,
當(dāng)直線y=ax與f(x)=ln$\frac{x}{4}$相切時,
即$\frac{ln\frac{x}{4}}{x}$=$\frac{1}{x}$,
從而可得x=4e;
a=$\frac{1}{4e}$;
當(dāng)過點(diǎn)(16,ln4)時,
a=$\frac{ln4}{16}$=$\frac{ln2}{8}$;
結(jié)合圖象可得,
$\frac{ln2}{8}$<a<$\frac{1}{4e}$;
故選B.
點(diǎn)評 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $1+\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\frac{{1+\sqrt{5}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分組 | 頻數(shù) | 頻率 | 頻率/組距 |
(40,50] | 2 | 0.02 | 0.002 |
(50,60] | 4 | 0.04 | 0.004 |
(60,70] | 11 | 0.11 | 0.011 |
(70,80] | 38 | 0.38 | 0.038 |
(80,90] | m | n | p |
(90,100] | 11 | 0.11 | 0.011 |
合計 | M | N | P |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{5}}{3}$ | B. | $\frac{2\sqrt{5}}{3}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{12}$ | B. | $\frac{1}{3}$ | C. | $\frac{3}{4}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com