4.點(diǎn)F是拋物線T:x2=2py(y>0)的焦點(diǎn),F(xiàn)1是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn),若線段FF1的中點(diǎn)P恰為拋物線T與雙曲線C的漸近線在第一象限內(nèi)的交點(diǎn),則雙曲線C的離心率e=$\frac{3\sqrt{2}}{4}$.

分析 雙曲線C的漸近線方程為y=$\frac{a}$x,代入x2=2py,可得P($\frac{2bp}{a}$,$\frac{2^{2}p}{{a}^{2}}$),利用P是線段FF1的中點(diǎn),可得P($\frac{c}{2}$,$\frac{p}{4}$),由此即可求出雙曲線C的離心率.

解答 解:雙曲線C的漸近線方程為y=$\frac{a}$x,代入x2=2py,可得P($\frac{2bp}{a}$,$\frac{2^{2}p}{{a}^{2}}$),
∵F(0,$\frac{p}{2}$),F(xiàn)1(c,0)
∴線段FF1的中點(diǎn)P($\frac{c}{2}$,$\frac{p}{4}$),
∴$\frac{2bp}{a}$=$\frac{c}{2}$,$\frac{2^{2}p}{{a}^{2}}$=$\frac{p}{4}$,
∴a2=8b2
∴c2=9b2,
∴e=$\frac{c}{a}$=$\frac{3\sqrt{2}}{4}$.
故答案為:$\frac{3\sqrt{2}}{4}$.

點(diǎn)評(píng) 本題考查雙曲線C的離心率,考查拋物線、雙曲線的性質(zhì),考查學(xué)生的計(jì)算能力,確定P的坐標(biāo)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosφ}\\{y=sinφ}\end{array}\right.$(φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρcos(θ+$\frac{π}{3}$)=2.
(Ⅰ)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(Ⅱ)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn)P到C2上的點(diǎn)的距離的最小值是此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(x,2),且 $\overrightarrow{a}$∥$\overrightarrow$,則|$\overrightarrow$|=( 。
A.$2\sqrt{5}$B.$\sqrt{5}$C.10D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=cosθ\\ y=2sinθ\end{array}$(θ為參數(shù)),點(diǎn)P在曲線C上,以O(shè)x為極軸建立極坐標(biāo)系,點(diǎn)Q的極坐標(biāo)為($\sqrt{3}$,$\frac{π}{2}$),則P,Q兩點(diǎn)距離的最大值為2+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知平面向量$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$滿足$\overrightarrow a}$⊥$\overrightarrow b}$,且{|$\overrightarrow a$|,|$\overrightarrow b$|,|$\overrightarrow c$|}={1,2,3},則|$\overrightarrow a$+$\overrightarrow b$+$\overrightarrow c$|的最大值是3+$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知直線l1:ax+2y-1=0,直線l2:x+by-3=0,且l1的傾斜角為$\frac{π}{4}$,則a=-2;若l1⊥l2,則b=1;若l1∥l2,則兩直線間的距離為$\frac{7\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若a>b>c>0,x=$\sqrt{{a}^{2}+(b+c)^{2}}$,y=$\sqrt{^{2}+(c+a)^{2}}$,z=$\sqrt{{c}^{2}+(a+b)^{2}}$,則x,y,z的大小順序是z>y>x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.定義運(yùn)算:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3,已知函數(shù)f(x)=$|\begin{array}{l}{sinx}&{-1}\\{1}&{cosx}\end{array}|$,則函數(shù)f(x)的最小正周期是( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.定義:如果函數(shù)f(x)在[a,b]上存在x1,x2 (a<x1<x2<b),滿足f′(x1)=$\frac{f(b)-f(a)}{b-a}$,f′(x2)=$\frac{f′(b)-f′(a)}{b-a}$,則稱數(shù)x1,x2 為[a,b]上的“對(duì)望數(shù)”函數(shù)f(x)為[a,b]上的“對(duì)望函數(shù)”,已知函數(shù)f(x)=$\frac{1}{3}{x}^{3}-{x}^{2}+m$是[0,m]上的“對(duì)望函數(shù)”,則實(shí)數(shù)m的取值范圍是( 。
A.(1,$\frac{3}{2}$)B.(1,$\frac{3}{2}$)∪($\frac{3}{2}$,3)C.(2,3)D.($\frac{3}{2}$,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案