某公司有職工160人,其中業(yè)務(wù)人員有120人,管理人員16人,后勤人員24人,為了了解職工的某種情況,采用分層抽樣的方法抽取一個(gè)容量為20的樣本,則需要抽取管理人員多少人?
考點(diǎn):分層抽樣方法
專題:概率與統(tǒng)計(jì)
分析:先計(jì)算業(yè)務(wù)人員,管理人員,后勤人員的人數(shù)的比例,再根據(jù)這個(gè)比例計(jì)算需抽取業(yè)務(wù)人員的人數(shù).
解答: 解:分層抽樣應(yīng)按各層所占的比例從總體中抽。
∵120:16:24=15:2:3,又共抽出20人,
∴則應(yīng)抽取業(yè)務(wù)人員為16×
20
160
=2人.
需要抽取管理人員2人.
點(diǎn)評(píng):本題考查基本的分層抽樣,屬基本題.抽樣在日常生活中經(jīng)常用到,培養(yǎng)學(xué)生從現(xiàn)實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統(tǒng)計(jì)問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足lgx+lgy=2,則x+4y的最小值是( 。
A、100B、40C、4D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=1+i(i是虛數(shù)單位)
(1)若ω=z2+3
.
z
-1,求|ω|
(2)若
z2+az+b
z2-z+1
=1-i(a,b∈R),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-4x-12<0},B={x|b-3<x<b+7},M={x|-4≤x<5},全集U=R.
(1)求A∩M; 
(2)若B∪(∁uM)=R,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinα,1),
b
=(1,cosα),
c
=(1,2),其中α∈[0,x].
(1)若
a
c
,求c的值;
(2)若
b
•(
a
+
c
)=1,求2sin2α-4sinαcosα+1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,側(cè)面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(1)求證:BC⊥平面PBD;
(2)設(shè)Q為側(cè)棱PC的中點(diǎn),求三棱錐Q-PBD的體積;
(3)若N是棱BC的中點(diǎn),則棱PC上是否存在點(diǎn)M,使MN平行于平面PDA?若存在,求PM的長;若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=alnx-bx2(x>0),若函數(shù)f(x)在x=1處與直線y=-
1
2
相切.
(1)求實(shí)數(shù)a,b的值;
(2)求函數(shù)f(x)在[
1
e
,e]上的最大值;
(3)已知函數(shù)g(x)=x3+3m2x+2m-
3
2
(m為實(shí)數(shù)),若對(duì)任意x1∈[
1
e
,e],x2∈[0,1],總有f(x1)<g(x2)成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某校高二年級(jí)共有1200名學(xué)生,現(xiàn)從參加高二年級(jí)期中考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段[40,50),[50,60)…[90,100]后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求分?jǐn)?shù)在[70,80)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)估計(jì)這次期末考試的及格人數(shù)(60分及以上為及格).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)2x•2-x+(
2
-1)0-8
2
3
;
(2)已知2a=5b=m,且
1
a
+
1
b
=2,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案