分析 (Ⅰ)求出導(dǎo)函數(shù),然后利用切線方程,得到方程組,即可求解a,b.
(Ⅱ)求出極值點(diǎn),通過(guò)列表判斷函數(shù)的導(dǎo)函數(shù)符號(hào),判斷函數(shù)的單調(diào)性,然后求解極值.
解答 (本題滿分12分)
解:(Ⅰ)f'(x)=6x2+2ax+b…(1分)
因?yàn)閒(x)在(-1,f(-1))處的切線方程為12x+y-2=0
所以f'(-1)=-12,f(-1)=14…(2分)
所以$\left\{\begin{array}{l}f'(-1)=-12\\ f(-1)=14\end{array}\right.$…(4分)
即:$\left\{\begin{array}{l}6-2a+b=-12\\-2+a-b+1=14\end{array}\right.$
所以$\left\{\begin{array}{l}a=3\\ b=-12\end{array}\right.$…(6分)
(Ⅱ)由(Ⅰ)f(x)=2x3+3x2-12x+1,
所以f'(x)=6x2+6x-12
令f'(x)=6x2+6x-12=0,解得:x1=-2,x2=1…(8分)
x | (-∞,-2) | -2 | (-2,1) | 1 | (1,+∞) |
f'(x) | + | 0 | -1 | 0 | + |
f(x) | ↑ | 21 | ↓ | -6 | ↑ |
點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的極值以及切線方程的應(yīng)用,考查分析問(wèn)題解決問(wèn)題的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1+i | B. | -1+i | C. | 1-i | D. | -1-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\widehat{y}$=2.1x-5.4 | B. | $\widehat{y}$=2.1x-2.3 | C. | $\widehat{y}$=2.1x+2.3 | D. | $\widehat{y}$=2.3x-2.1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com