16.函數(shù)f(x)=$\frac{cosx}{{{x^2}+1}}$的圖象大致為(  )
A.B.C.D.

分析 判斷函數(shù)的奇偶性,利用x=0時(shí)的函數(shù)值判斷選項(xiàng)即可.

解答 解:函數(shù)f(x)=$\frac{cosx}{{{x^2}+1}}$是偶函數(shù),并且x=0時(shí),f(0)=1,
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)的圖象的判斷,函數(shù)的奇偶性的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{xlnx}{x-1}$.
(1)求曲線f(x)在點(diǎn)(e,f(e))(e為自然對(duì)數(shù)的底數(shù))處的切線方程;
(2)求證:$\frac{\root{2016}{2015}}{\root{2015}{2016}}$>$\frac{2015}{2016}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,3asinB=c,cosB=$\frac{2\sqrt{5}}{5}$,D是AC的中點(diǎn),且BD=$\sqrt{26}$,則△ABC的面積為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知y=f(x)是定義在R上的奇函數(shù),在(0,+∞)是增函數(shù),且f(2)=0,則滿足f(x-1)<0的x的范圍是(-∞,-1)∪(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x-a|+|x+2|.
(1)當(dāng)a=1,解不等式f(x)<5;
(2)對(duì)任意x∈R,不等式f(x)≥3a-2都成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知點(diǎn)O是△ABC的外心,a,b,c分別為角A,B,C的對(duì)邊,若2c2-c+b2=0,則$\overrightarrow{BC}$•$\overrightarrow{AO}$的最大值是( 。
A.$\frac{1}{12}$B.$\frac{1}{24}$C.$\frac{1}{8}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.函數(shù)f(x)=Asin(ωx+φ)({A>0,ω>0,|φ|<$\frac{π}{2}}$)在某一周期內(nèi)圖象最低點(diǎn)與最高點(diǎn)的坐標(biāo)分別為$({\frac{7π}{3},-\sqrt{3}})和({\frac{13π}{3},\sqrt{3}})$
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設(shè)△ABC的三內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且f(A)=$\sqrt{3}$,a=3,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)y=Asin(ωx+φ)+b(A>0,|φ|<π,b為常數(shù))的一段圖象(如圖所示).
(1)求函數(shù)的解析式;
(2)求這個(gè)函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若展開式(x+1)n中第六項(xiàng)的系數(shù)最大,求展開式的第二項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案