A. | f(x)的單調(diào)遞減區(qū)間為(1,3) | B. | x=3是函數(shù)f(x)的極小值點(diǎn) | ||
C. | f(x)的單調(diào)遞減區(qū)間為(0,1)∪(3,+∞) | D. | x=1是函數(shù)f(x)的極小值點(diǎn) |
分析 求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值點(diǎn)即可.
解答 解:∵f(x)=-$\frac{1}{2}{x^2}$+4x-3lnx,定義域是(0,+∞),
∴f′(x)=-x+4-$\frac{3}{x}$=-$\frac{(x-1)(x-3)}{x}$,
令f′(x)>0,解得:1<x<3,令f′(x)<0,解得:0<x<1或x>3,
故函數(shù)f(x)在(0,1)遞減,(1,3)遞增,(3,+∞)遞減,
故x=1是函數(shù)的極小值點(diǎn),
故選:D.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 某校高二年級(jí)有10個(gè)班,1班62人,2班61人,3班62人,由此推測(cè)各班人數(shù)都超過60人 | |
B. | 根據(jù)三角形的性質(zhì),可以推測(cè)空間四面體的性質(zhì) | |
C. | 平行四邊形對(duì)角線互相平分,矩形是平行四邊形,所以矩形的對(duì)角線互相平分 | |
D. | 在數(shù)列{an}中,a1=1,an+1=$\frac{{2{a_n}}}{{2+{a_n}}}$,n∈N*,計(jì)算a2,a3,由此歸納出{an}的通項(xiàng)公式 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5\sqrt{2}}{2}$ | B. | -$\frac{5\sqrt{2}}{2}$ | C. | $\frac{5\sqrt{17}}{17}$ | D. | -$\frac{5\sqrt{17}}{17}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (0,1) | C. | (0,2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com