15.設(shè)全集U=R,集合M={x|-2≤x≤2},N={x|y=$\sqrt{1-x}$},則M∪N={x|x≤2},M∩N={x|-2≤x≤1}.

分析 求出集合的等價(jià)條件,根據(jù)集合的基本運(yùn)算進(jìn)行求解即可.

解答 解:N={x|y=$\sqrt{1-x}$}={x|1-x≥0}={x|x≤1},
∵M(jìn)={x|-2≤x≤2},
∴M∪N={x|x≤2},M∩N={x|-2≤x≤1},
故答案為:{x|x≤2},{x|-2≤x≤1}

點(diǎn)評(píng) 本題主要考查集合的基本運(yùn)算,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.三個(gè)元件T1,T2,T3正常工作的概率分別為$\frac{1}{2}\;,\frac{3}{4}\;,\frac{3}{4}$,將它們中某兩個(gè)元件并聯(lián)后再和第三個(gè)元件串聯(lián)接入電路.
(1)在如圖的一段電路中,電路不發(fā)生故障的概率是多少?
(2)三個(gè)元件按要求連成怎樣的一段電路時(shí),才能使電路中不發(fā)生故障的概率最大?請(qǐng)畫出此時(shí)的電路圖,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ln$\frac{x+b}{x-b}$.(b>0).
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性;
(3)判斷f(x)在(b,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若數(shù)列{an}滿足a1a2a3…an=n2+3n+2,在數(shù)列{an}的通項(xiàng)公式為an=$\left\{\begin{array}{l}{6,n=1}\\{\frac{n+2}{n},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在扇形AOB中,圓心角等于$\frac{π}{3}$,半徑為4,在弧AB上有一動(dòng)點(diǎn)P(不與點(diǎn)AB重合),過點(diǎn)P引平行于OB的直線和OA交于點(diǎn)C,設(shè)∠AOP=θ,求三角形POC的面積的最大值及此時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè){an}為等差數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,已知a2+a5=1,S15=75,Tn為數(shù)列$\left\{{\frac{S_n}{n}}\right\}$的前n項(xiàng)和(n∈N*).
(1)求Sn;
(2)求Tn,及Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合M={x|x2-4x<0},N={x|m<x<5},若M∩N={x|3<x<n},則m+n等于(  )
A.9B.8C.7D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(x)=4x3-12x2+a在[-2,2]上的最大值為3,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知θ∈(π,$\frac{3}{2}$π),且sin$\frac{θ}{2}$=$\frac{4}{5}$,求$\frac{sinθ}{1+cosθ}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案