分析 (1)求出函數(shù)的導(dǎo)數(shù),可得f′(-1)=0,f′(3)=0,f(3)=-16,解方程可得a,b,c;
(2)求出導(dǎo)數(shù),求出極值點,計算f(3),f(-3),f(-1),f(4)比較大小,即可得到最值.
解答 解:(1)函數(shù)f(x)=x3+ax2+bx+c的導(dǎo)數(shù)為f′(x)=3x2+2ax+b,
在x=-1處有極值,即有f′(-1)=0,即3-2a+b=0,
又在x=3處的切線方程為y=-16,即有f′(3)=27+6a+b=0,
f(3)=27+9a+3b+c=-16,
解方程可得,a=-3,b=-9,c=11;
(2)f(x)=x3-3x2-9x+11的導(dǎo)數(shù)為f′(x)=3x2-6x-9,
由f′(x)=0,解得x=3或-1,
由f(3)=27-27-27+11=-16,f(-1)=-1-3+9+11=16,
f(4)=64-48-36+11=-9,f(-3)=-27-27+27+11=-16.
可得f(x)的最大值為16,最小值為-16.
點評 本題考查導(dǎo)數(shù)的運用:求切線的斜率和極值、最值,考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=cosx | B. | y=$\frac{1}{x-0.5}$ | C. | y=-ln(x+1) | D. | y=x+$\frac{1}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com