已知{an}是公比為2的等比數(shù)列,則
a1+a2+a3
a3+a4+a5
的值為
 
考點(diǎn):等比數(shù)列的性質(zhì)
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:利用等比數(shù)列的通項(xiàng),即可得出結(jié)論.
解答: 解:∵{an}是公比為2的等比數(shù)列,
a1+a2+a3
a3+a4+a5
=
a1+a2+a3
q2(a1+a2+a3)
=
1
4
,
故答案為:
1
4
點(diǎn)評(píng):本題考查等比數(shù)列的通項(xiàng),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-2,-1),
b
=(λ,1),λ∈R.
(Ⅰ)當(dāng)λ=3時(shí),求
a
b
及|
a
+
b
|;
(Ⅱ)若
a
b
的夾角的余弦值為正,λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線x2-
y2
b2
=1(b>0)的兩個(gè)焦點(diǎn)分別是F1、F2,點(diǎn)P在雙曲線上,且PF2垂直于x軸,∠PF1F2=30°,則此雙曲線的漸近線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
是已知的平面向量,向量
a
,
b
,
c
在同一平面內(nèi)且兩兩不共線,有如下四個(gè)命題:
①給定向量
b
,總存在向量
c
,使
a
=
b
+
c
;
②給定向量
b
c
,總存在實(shí)數(shù)λ和μ,使
a
b
c

③給定單位向量
b
和正數(shù)μ,總存在單位向量
c
和實(shí)數(shù)λ,使
a
b
c
;
④若|
a
|=2,存在單位向量
b
、
c
和正實(shí)數(shù)λ,μ,使
a
b
c
,則3λ+3μ≥6
其中真命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C1:
x2
a2
+
y2
b2
=1與橢圓C2:
y2
a2
+
x2
b2
=1(a>b>0)的交點(diǎn)在坐標(biāo)軸上的射影恰好為這兩個(gè)橢圓的焦點(diǎn),則這兩個(gè)橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若α為銳角,且sin(
π
3
-α)=
1
3
,則sinα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
,|
a
|=1,|
b
|=2,則|2
b
-
a
|的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足|
 
z
1
 
2
i
|=1+i,(其中i為虛數(shù)單位),則|z|
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>b>1,則
lim
n→+∞
an-bn+1+1
an+1+bn-1
)的值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案