【題目】為研究心理健康與是否是留守兒童的關(guān)系,某小學(xué)在本校四年級學(xué)生中抽取了一個110人的樣本,其中留守兒童有40人,非留守兒童有70人,對他們進行了心理測試,并繪制了如圖的等高條形圖,試問:能否在犯錯誤的概率不超過0.001的前提下認為心理健康與是否是留守兒童有關(guān)系?
參考數(shù)據(jù):

P(K2>k)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2= (n=a+b+c+d)

【答案】解:根據(jù)等高條形圖,可得留守兒童有40人,心理健康的有12人,心理不健康的有28人,非留守兒童有70人,心理健康的有56人,心理不健康的有14人,
∴K2= ≈26.96>10.828,
∴在犯錯誤的概率不超過0.001的前提下認為心理健康與是否是留守兒童有關(guān)系.
【解析】根據(jù)等高條形圖,可得留守兒童有40人,心理健康的有12人,心理不健康的有28人,非留守兒童有70人,心理健康的有56人,心理不健康的有14人,把數(shù)據(jù)代入公式,求出觀測值,把觀測值同臨界值進行比較,得到結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個命題:
①f(x)=x3﹣3x2是增函數(shù),無極值.
②f(x)=x3﹣3x2在(﹣∞,2)上沒有最大值
③由曲線y=x,y=x2所圍成圖形的面積是
④函數(shù)f(x)=lnx+ax存在與直線2x﹣y=0平行的切線,則實數(shù)a的取值范圍是(﹣∞,2)
其中正確命題的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足:f(x)+f′(x)>1,f(0)=4,則不等式exf(x)>ex+3(其中e為自然對數(shù)的底數(shù))的解集為(
A.(0,+∞)
B.(﹣∞,0)∪(3,+∞)
C.(﹣∞,0)∪(0,+∞)
D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知全集 U=R,集合 A={x|3≤x<7},B={x|2<log2 x<4}.
(1)求A∪B;
(2)求(UA )∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某企業(yè)近3年的前7個月的月利潤(單位:百萬元)如下面的折線圖所示:

1)試問這3年的前7個月中哪個月的月平均利潤最高?

2)通過計算判斷這3年的前7個月的總利潤的發(fā)展趨勢;

3)試以第3年的前4個月的數(shù)據(jù)(如下表),用線性回歸的擬合模式估測第38月份的利潤.

月份x

1

2

3

4

利潤y(單位:百萬元)

4

4

6

6

相關(guān)公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=ax , x∈[﹣1,2]的最大值與函數(shù)f(x)=x2﹣2x+3的最值相等,則a的值為(
A.
B. 或2
C. 或2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=k﹣ (其中k為常數(shù));
(1)求:函數(shù)的定義域;
(2)證明:函數(shù)在區(qū)間(0,+∞)上為增函數(shù);
(3)若函數(shù)為奇函數(shù),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1、拋物線C2的焦點均在x軸上,C1的中心和C2的頂點均為原點O,從每條曲線上取兩個點,將其坐標記錄于下表中:

x

3

﹣2

4

y

﹣2

0

﹣4


(1)求C1、C2的標準方程;
(2)請問是否存在直線l滿足條件:①過C2的焦點F;②與C1交不同兩點M、N且滿足 ?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 =(2,1), =(1,7), =(5,1),設(shè)Z是直線OP上的一動點.

(1)求使 取最小值時的 ;
(2)對(1)中求出的點Z,求cos∠AZB的值.

查看答案和解析>>

同步練習(xí)冊答案