【題目】如圖1,一個(gè)正四棱柱形的密閉容器底部鑲嵌了同底的正四棱錐形實(shí)心裝飾塊,容器內(nèi)盛有升水時(shí),水面恰好經(jīng)過(guò)正四棱錐的頂點(diǎn)P.如果將容器倒置,水面也恰好過(guò)點(diǎn)(圖2).有下列四個(gè)命題:
A.正四棱錐的高等于正四棱柱高的一半 |
B.將容器側(cè)面水平放置時(shí),水面也恰好過(guò)點(diǎn) |
C.任意擺放該容器,當(dāng)水面靜止時(shí),水面都恰好經(jīng)過(guò)點(diǎn) |
D.若往容器內(nèi)再注入升水,則容器恰好能裝滿(mǎn) |
其中真命題的代號(hào)是: (寫(xiě)出所有真命題的代號(hào)).
【答案】BD
【解析】
設(shè)圖(1)水的高度h2幾何體的高為h1
圖(2)中水的體積為b2h1-b2h2=b2(h1-h2),
所以b2h2=b2(h1-h2),所以h1=h2,故A錯(cuò)誤,D正確.
對(duì)于B,當(dāng)容器側(cè)面水平放置時(shí),P點(diǎn)在長(zhǎng)方體中截面上,
又水占容器內(nèi)空間的一半,所以水面也恰好經(jīng)過(guò)P點(diǎn),故B正確.
對(duì)于C,假設(shè)C正確,當(dāng)水面與正四棱錐的一個(gè)側(cè)面重合時(shí),
經(jīng)計(jì)算得水的體積為b2h2>b2h2,矛盾,故C不正確.故選BD
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正四棱柱的底面邊長(zhǎng)為2,側(cè)棱為上底面上的動(dòng)點(diǎn),給出下列四個(gè)結(jié)論:
①若PD=3,則滿(mǎn)足條件的P點(diǎn)有且只有一個(gè);
②若,則點(diǎn)P的軌跡是一段圓弧;
③若PD∥平面,則DP長(zhǎng)的最小值為2;
④若PD∥平面,且,則平面BDP截正四棱柱的外接球所得圖形的面積為.
其中所有正確結(jié)論的序號(hào)為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)響應(yīng)“綠水青山就是金山銀山”的號(hào)召,因地制宜的將該鎮(zhèn)打造成“生態(tài)水果特色小鎮(zhèn)”.經(jīng)調(diào)研發(fā)現(xiàn):某珍稀水果樹(shù)的單株產(chǎn)量(單位:千克)與施用肥料(單位:千克)滿(mǎn)足如下關(guān)系:,肥料成本投入為元,其它成本投入(如培育管理、施肥等人工費(fèi))元.已知這種水果的市場(chǎng)售價(jià)大約為15元/千克,且銷(xiāo)路暢通供不應(yīng)求.記該水果樹(shù)的單株利潤(rùn)為(單位:元).
(Ⅰ)求的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)施用肥料為多少千克時(shí),該水果樹(shù)的單株利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位擬建一個(gè)扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點(diǎn)為圓心的兩個(gè)同心圓弧和延長(zhǎng)后通過(guò)點(diǎn)的兩條直線(xiàn)段圍成.按設(shè)計(jì)要求扇環(huán)面的周長(zhǎng)為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實(shí)線(xiàn)部分)進(jìn)行裝飾時(shí),直線(xiàn)部分的裝飾費(fèi)用為4元/米,弧線(xiàn)部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時(shí), 取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)討論極值點(diǎn)的個(gè)數(shù);
(2)若,不等式恒成立,當(dāng)為正數(shù)時(shí),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)求證: .
(2)某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù):
sin213°+cos217°-sin13°cos17°;
sin215°+cos215°-sin15°cos15°;
sin218°+cos212°-sin18°cos12°;
sin2(-18°)+cos248°-sin(-18°)cos48°;
sin2(-25°)+cos255°-sin(-25°)cos55°.
①試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù);
②根據(jù)①的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線(xiàn).
(1)求證:對(duì)直線(xiàn)與圓總有兩個(gè)不同的交點(diǎn);
(2)是否存在實(shí)數(shù),使得圓上有四個(gè)點(diǎn)到直線(xiàn)的距離為?若存在,求出的范圍,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《周脾算經(jīng)》有記載:一年有二十四個(gè)節(jié)氣,每個(gè)節(jié)氣晷(gui)長(zhǎng)損益相同,晷是按照日影測(cè)定時(shí)刻的儀器,晷長(zhǎng)即所測(cè)定的影子的長(zhǎng)度,二十四節(jié)氣及晷長(zhǎng)變化如圖所示,相鄰兩個(gè)節(jié)氣晷長(zhǎng)變化量相同,周而復(fù)始,若冬至晷長(zhǎng)最長(zhǎng)是一丈三尺五寸,夏至晷長(zhǎng)最短是一尺五寸,(一丈等于10尺,一尺等于10寸),則秋分節(jié)氣的晷長(zhǎng)是( )
A.七尺五寸B.二尺五寸C.五尺五寸D.四尺五寸
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓與軸相切于點(diǎn)(0,3),圓心在經(jīng)過(guò)點(diǎn)(2,1)與點(diǎn)(﹣2,﹣3)的直線(xiàn)上.
(1)求圓的方程;
(2)圓與圓:相交于M、N兩點(diǎn),求兩圓的公共弦MN的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com