【題目】已知圓,直線.
(1)求證:對直線與圓總有兩個不同的交點;
(2)是否存在實數(shù),使得圓上有四個點到直線的距離為?若存在,求出的范圍,若不存在,說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)安排甲、乙、丙、丁、戊5名同學參加2022年杭州亞運會志愿者服務活動,有翻譯、導游、禮儀、司機四項工作可以安排,以下說法正確的是( )
A.每人都安排一項工作的不同方法數(shù)為54
B.每人都安排一項工作,每項工作至少有一人參加,則不同的方法數(shù)為
C.如果司機工作不安排,其余三項工作至少安排一人,則這5名同學全部被安排的不同方法數(shù)為
D.每人都安排一項工作,每項工作至少有一人參加,甲、乙不會開車但能從事其他三項工作,丙、丁、戊都能勝任四項工作,則不同安排方案的種數(shù)是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,一個正四棱柱形的密閉容器底部鑲嵌了同底的正四棱錐形實心裝飾塊,容器內(nèi)盛有升水時,水面恰好經(jīng)過正四棱錐的頂點P.如果將容器倒置,水面也恰好過點(圖2).有下列四個命題:
A.正四棱錐的高等于正四棱柱高的一半 |
B.將容器側(cè)面水平放置時,水面也恰好過點 |
C.任意擺放該容器,當水面靜止時,水面都恰好經(jīng)過點 |
D.若往容器內(nèi)再注入升水,則容器恰好能裝滿 |
其中真命題的代號是: (寫出所有真命題的代號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四色猜想是世界三大數(shù)學猜想之一,1976年數(shù)學家阿佩爾與哈肯證明,稱為四色定理.其內(nèi)容是:“任意一張平面地圖只用四種顏色就能使具有共同邊界的國家涂上不同的顏色.”用數(shù)學語言表示為“將平面任意地細分為不相重疊的區(qū)域,每一個區(qū)域總可以用,,,四個數(shù)字之一標記,而不會使相鄰的兩個區(qū)域得到相同的數(shù)字.”如圖,網(wǎng)格紙上小正方形的邊長為,粗實線圍城的各區(qū)域上分別標有數(shù)字,,,的四色地圖符合四色定理,區(qū)域和區(qū)域標記的數(shù)字丟失.若在該四色地圖上隨機取一點,則恰好取在標記為的區(qū)域的概率所有可能值中,最大的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以軸的非負半軸為極軸,原點為極點建立極坐標系,兩種坐標系中取相同的長度單位,若直線和 分別與曲線相交于、兩點(,兩點異于坐標原點).
(1)求曲線的普通方程與、兩點的極坐標;
(2)求直線的極坐標方程及的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com