分析 先求出命題p,q為真命題的等價(jià)條件,然后利用“p且q”是假命題,“p或q”是真命題,確定實(shí)數(shù)a的取值范圍.
解答 解:∵y=loga(2-ax)在區(qū)間[0,1]上為減函數(shù),∴a>1.
又∵2-ax>0在[0,1]上恒成立,
2-a>0,即a<2,
∴1<a<2.
$y=lg(a{x}^{2}-x+\frac{a}{12})$的值域是R,
∴$a{x}^{2}-x+\frac{a}{12}$的值域?yàn)椋?,+∞);
①若a=0,-x的值域可以為(0,+∞);
②若a≠0,則$\left\{\begin{array}{l}{a>0}\\{△≥0}\end{array}\right.$,
解得0<a$≤\sqrt{3}$.
∴a的取值范圍是:0≤a$≤\sqrt{3}$.
由題意可知p真:1<a<2;q真:0≤a$≤\sqrt{3}$.
∵“p且q”是假命題,“p或q”是真命題
∴p、q一真一假.
當(dāng)p真q假時(shí)$\sqrt{3}<a<2$,當(dāng)p假q真時(shí)0≤a≤1.
綜上,a的取值范圍是$({\sqrt{3},2})$∪[0,1].
點(diǎn)評(píng) 本題主要考查復(fù)合命題的真假判斷以及應(yīng)用,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ϕ | B. | {-2} | C. | {1} | D. | {-2,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直線 | B. | 橢圓 | C. | 雙曲線 | D. | 拋物線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | -$\frac{1}{5}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x>0} | B. | {x|x>1} | C. | R | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com