【題目】已知對任意的實數(shù),都有:,且當時,有

1)求

2)求證:上為增函數(shù);

3)若,且關于的不等式對任意的恒成立,求實數(shù)的取值范圍.

【答案】11;(2)證明見解析;(3

【解析】

(1)在已知恒等式中令可得;

(2)用增函數(shù)的定義可證;

(3)利用已知恒等式和求得,再將不等式化為,利用單調性可化為上恒成立,再利用二次函數(shù)的最值可解決.

1)解:令,則,解得

2)證明:設上任意兩個實數(shù),且,則

所以,

,所以,

,即,

所以上為增函數(shù).

3)由已知條件有:

故原不等式可化為:,

,

因為,

所以,

因為,

所以,

故不等式可化為

由(2)可知上為增函數(shù),所以,

上恒成立,

,即成立即可,

i)當時,上單調遞增.

解得,所以

ii)當,即時,有

化簡得:,即,

解得,

,所以,

綜上所述:實數(shù)的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正四棱柱的底面邊長為,側棱長為1,求:

(1)直線與直線所成角的余弦值;

(2)平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中,橢圓的方程為,以為極點, 軸非負半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程為.

(1)求直線的直角坐標方程和橢圓的參數(shù)方程;

(2)設為橢圓上任意一點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的長軸長為4,離心率為.

(1)求橢圓的標準方程;

(2)過右焦點的直線交橢圓于兩點,過點作直線的垂線,垂足為連接,當直線的傾斜角發(fā)生變化時,直線軸是否相交于定點?若是,求出定點坐標,否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知表1和表2是某年部分日期的天安門廣場升旗時刻表:

表1:某年部分日期的天安門廣場升旗時刻表

日期

升旗時刻

日期

升旗時刻

日期

升旗時刻

日期

升旗時刻

1月1日

7:36

4月9日

5:46

7月9日

4:53

10月8日

6:17

1月21日

7:11

4月28日

5:19

7月27日

5:07

10月26日

6:36

2月10日

7:14

5月16日

4:59

8月14日

5:24

11月13日

6:56

3月2日

6:47

6月3日

4:47

9月2日

5:42

12月1日

7:16

3月22日

6:15

6月22日

4:46

9月20日

5:50

12月20日

7:31

表2:某年1月部分日期的天安門廣場升旗時刻表

日期

升旗時刻

日期

升旗時刻

日期

升旗時刻

2月1日

7:23

2月11日

7:13

2月21日

6:59

2月3日

7:22

2月13日

7:11

2月23日

6:57

2月5日

7:20

2月15日

7:08

2月25日

6:55

2月7日

7:17

2月17日

7:05

2月27日

6:52

2月9日

7:15

2月19日

7:02

2月28日

6:49

(1)從表1的日期中隨機選出一天,試估計這一天的升旗時刻早于7:00的概率;

(2)甲、乙二人各自從表2的日期中隨機選擇一天觀看升旗,且兩人的選擇相互獨立,記為這兩人中觀看升旗的時刻早于7:00的人數(shù),求的 分布列和數(shù)學期望;

(3)將表1和表2的升旗時刻化為分數(shù)后作為樣本數(shù)據(jù)(如7:31化為),記表2中所有升旗時刻對應數(shù)據(jù)的方差為,表1和表2中所有升旗時刻對應數(shù)據(jù)的方差為,判斷的大。ㄖ恍鑼懗鼋Y論).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設m,n是兩條不同直線,,是三個不同平面,給出下列四個命題:①若m⊥n,則m//n;②若//,//,m,則m⊥;③若m//n//,則m//n;④,,則//.其中正確命題的序號是_______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】銷售甲、乙兩種商品所得利潤分別是萬元,它們與投入資金 萬元的關系分別為,,(其中都為常數(shù)),函數(shù)對應的曲線、如圖所示.

1)求函數(shù)的解析式;

2)若該商場一共投資4萬元經銷甲、乙兩種商品,求該商場所獲利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知小明(如圖中所示)身高米,路燈米, , 均垂直于水平地面,分別與地面交于點 .點光源從發(fā)出,小明在地上的影子記作.

(1)小明沿著圓心為,半徑為米的圓周在地面上走一圈,求掃過的圖形面積;

(2)若米,小明從出發(fā),以米/秒的速度沿線段走到, ,且米. 秒時,小明在地面上的影子長度記為(單位:米),求的表達式與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,斜三棱柱中,為銳角,底面是以為斜邊的等腰直角三角形,

(1)證明:平面 平面;

(2)若直線與底面成角為, ,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案