分析 (Ⅰ)由已知得a2a-a2=1,解得${a}_{2}=\frac{{a}^{2}+1}{a}$,由a3=$\frac{5}{2}$,得$\frac{{a}^{2}+1}{a}$=$\frac{1}{2}$或$\frac{{a}^{2}+1}{a}$=2,由此能求出實(shí)數(shù)a的值.
(Ⅱ)由已知得$_{n+1}=\frac{{a}_{n+1}}{\sqrt{n+1}}$=$\frac{{a}_{n}+\frac{1}{{a}_{n}}}{\sqrt{n+1}}$,由${a}_{n}+\frac{1}{{a}_{n}}$$≥2\sqrt{{a}_{n}•\frac{1}{{a}_{n}}}$=2,能證明$_{n+1}≥\frac{2}{\sqrt{2}}=\sqrt{2}$=b2,再用數(shù)學(xué)歸納法證明bn<$\frac{3}{2}$,n≥2.由此能證明$\sqrt{2}$≤bn<$\frac{3}{2}$(n≥2,n∈N*).
解答 (Ⅰ)解:∵數(shù)列{an}滿足a1=a,an+1an-an2=1(n∈N*),
∴a2a-a2=1,解得${a}_{2}=\frac{{a}^{2}+1}{a}$,
∵a3=$\frac{5}{2}$,∴$\frac{5}{2}•\frac{{a}^{2}+1}{a}-(\frac{{a}^{2}+1}{a})^{2}=1$,
解得$\frac{{a}^{2}+1}{a}$=$\frac{1}{2}$或$\frac{{a}^{2}+1}{a}$=2,
由$\frac{{a}^{2}+1}{a}$=$\frac{1}{2}$解得a∈∅,由$\frac{{a}^{2}+1}{a}$=2,解得a=1.
∴實(shí)數(shù)a的值為1.
(Ⅱ)證明:當(dāng)a=1時,數(shù)列{an}滿足a1=1,an+1an-an2=1(n∈N*),
∴${a}_{n+1}={a}_{n}+\frac{1}{{a}_{n}}$,
∴${a}_{2}=1+\frac{1}{1}$=2,${a}_{3}=2+\frac{1}{2}=\frac{5}{2}$,${a}_{4}=\frac{5}{2}+\frac{2}{5}$=$\frac{24}{10}$,…
∵bn=$\frac{{a}_{n}}{\sqrt{n}}$(n∈N*),
∴$_{n+1}=\frac{{a}_{n+1}}{\sqrt{n+1}}$=$\frac{{a}_{n}+\frac{1}{{a}_{n}}}{\sqrt{n+1}}$,
∵an>0,∴${a}_{n}+\frac{1}{{a}_{n}}$$≥2\sqrt{{a}_{n}•\frac{1}{{a}_{n}}}$=2,當(dāng)且僅當(dāng)${a}_{n}=\frac{1}{{a}_{n}}$,即an=1=a1時,取等號,
∴$_{n+1}≥\frac{2}{\sqrt{2}}=\sqrt{2}$=b2,
再證bn<$\frac{3}{2}$,n≥2.
(a)n=2時,$_{2}=\sqrt{2}$,滿足$\sqrt{2}<\frac{3}{2}$.
(b)假設(shè)當(dāng)n=k,(k>2)時有bk<$\frac{3}{2}$,等價于$\frac{{a}_{k}}{\sqrt{k}}<\frac{3}{2}\sqrt{k}$,
∵$\frac{{a}_{k}}{\sqrt{k}}≥\sqrt{2}$,∴$\sqrt{2}k<{a}_{k}<\frac{3\sqrt{k}}{2}$,
當(dāng)n=k+1時,$_{k+1}=\frac{{a}_{k+1}}{\sqrt{k+1}}$<$\frac{f(\frac{3}{2}\sqrt{k})}{\sqrt{k+1}}$=$\frac{\frac{1}{2}\sqrt{k}+\frac{1}{\frac{3}{2}\sqrt{k}}}{\sqrt{k+1}}$,
∴只需證$\frac{\frac{3}{2}\sqrt{k}+\frac{1}{\frac{3}{2}\sqrt{k}}}{\sqrt{k+1}}$<$\frac{3}{2}$.
證明如下:∵k>2,∴k>$\frac{16}{9}$,
∴9k>16,∴25k>16(k+1),∴5$\sqrt{k}$>4$\sqrt{k+1}$,
∴$\frac{5}{2}\sqrt{k}$>2$\sqrt{k+1}$,∴$\frac{5}{6}\sqrt{k}>\frac{2}{3}\sqrt{k+1}$,
∴$\frac{3}{2}\sqrt{k}>\frac{2}{3}(\sqrt{k+1}+\sqrt{k})$,
∴$\frac{1}{\frac{3}{2}\sqrt{k}}<\frac{1}{\frac{2}{3}(\sqrt{k+1}+\sqrt{k})}$,∴$\frac{1}{\frac{3}{2}\sqrt{k}}<\frac{3}{2}(\sqrt{k+1}-\sqrt{k})$,
∴$\frac{3}{2}\sqrt{k}+\frac{1}{\frac{3}{2}\sqrt{k}}<\frac{3}{2}\sqrt{k+1}$,
∴$\frac{\frac{3}{2}\sqrt{k}+\frac{1}{\frac{3}{2}\sqrt{k}}}{\sqrt{k+1}}<\frac{3}{2}$,
∴n=k+1時,$_{k+1}<\frac{3}{2}$成立.
綜合(a),(b)知bn<$\frac{3}{2}$.
綜上所述:$\sqrt{2}$≤bn<$\frac{3}{2}$(n≥2,n∈N*).
點(diǎn)評 本題考查實(shí)數(shù)值的求法,考查不等式的證明,綜合性強(qiáng)、難度大,解題時要認(rèn)真審題,注意均值定理、數(shù)學(xué)歸納法、數(shù)列知識的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | -1 | 0 | 1 | 2 | 3 |
f(x) | -0.6 | 3.1 | 5.4 | 5.9 | 7 |
g(x) | -0.5 | 3.4 | 4.8 | 5.2 | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{43}$ | B. | $\sqrt{43}$ | C. | $\sqrt{11}$ | D. | 2$\sqrt{11}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-$\sqrt{2}$-1,$\sqrt{2}$-1} | B. | {-$\sqrt{2}$+1,$\sqrt{2}$+1} | C. | [-2,0] | D. | (0,2]∪{1-$\sqrt{2}$} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com