6.設(shè)數(shù)列{an}滿足a1=a,an+1an-an2=1(n∈N*
(I)若a3=$\frac{5}{2}$,求實(shí)數(shù)a的值;
(Ⅱ)設(shè)bn=$\frac{{a}_{n}}{\sqrt{n}}$(n∈N*).若a=1,求證$\sqrt{2}$≤bn<$\frac{3}{2}$(n≥2,n∈N*).

分析 (Ⅰ)由已知得a2a-a2=1,解得${a}_{2}=\frac{{a}^{2}+1}{a}$,由a3=$\frac{5}{2}$,得$\frac{{a}^{2}+1}{a}$=$\frac{1}{2}$或$\frac{{a}^{2}+1}{a}$=2,由此能求出實(shí)數(shù)a的值.
(Ⅱ)由已知得$_{n+1}=\frac{{a}_{n+1}}{\sqrt{n+1}}$=$\frac{{a}_{n}+\frac{1}{{a}_{n}}}{\sqrt{n+1}}$,由${a}_{n}+\frac{1}{{a}_{n}}$$≥2\sqrt{{a}_{n}•\frac{1}{{a}_{n}}}$=2,能證明$_{n+1}≥\frac{2}{\sqrt{2}}=\sqrt{2}$=b2,再用數(shù)學(xué)歸納法證明bn<$\frac{3}{2}$,n≥2.由此能證明$\sqrt{2}$≤bn<$\frac{3}{2}$(n≥2,n∈N*).

解答 (Ⅰ)解:∵數(shù)列{an}滿足a1=a,an+1an-an2=1(n∈N*),
∴a2a-a2=1,解得${a}_{2}=\frac{{a}^{2}+1}{a}$,
∵a3=$\frac{5}{2}$,∴$\frac{5}{2}•\frac{{a}^{2}+1}{a}-(\frac{{a}^{2}+1}{a})^{2}=1$,
解得$\frac{{a}^{2}+1}{a}$=$\frac{1}{2}$或$\frac{{a}^{2}+1}{a}$=2,
由$\frac{{a}^{2}+1}{a}$=$\frac{1}{2}$解得a∈∅,由$\frac{{a}^{2}+1}{a}$=2,解得a=1.
∴實(shí)數(shù)a的值為1.
(Ⅱ)證明:當(dāng)a=1時,數(shù)列{an}滿足a1=1,an+1an-an2=1(n∈N*),
∴${a}_{n+1}={a}_{n}+\frac{1}{{a}_{n}}$,
∴${a}_{2}=1+\frac{1}{1}$=2,${a}_{3}=2+\frac{1}{2}=\frac{5}{2}$,${a}_{4}=\frac{5}{2}+\frac{2}{5}$=$\frac{24}{10}$,…
∵bn=$\frac{{a}_{n}}{\sqrt{n}}$(n∈N*),
∴$_{n+1}=\frac{{a}_{n+1}}{\sqrt{n+1}}$=$\frac{{a}_{n}+\frac{1}{{a}_{n}}}{\sqrt{n+1}}$,
∵an>0,∴${a}_{n}+\frac{1}{{a}_{n}}$$≥2\sqrt{{a}_{n}•\frac{1}{{a}_{n}}}$=2,當(dāng)且僅當(dāng)${a}_{n}=\frac{1}{{a}_{n}}$,即an=1=a1時,取等號,
∴$_{n+1}≥\frac{2}{\sqrt{2}}=\sqrt{2}$=b2,
再證bn<$\frac{3}{2}$,n≥2.
(a)n=2時,$_{2}=\sqrt{2}$,滿足$\sqrt{2}<\frac{3}{2}$.
(b)假設(shè)當(dāng)n=k,(k>2)時有bk<$\frac{3}{2}$,等價于$\frac{{a}_{k}}{\sqrt{k}}<\frac{3}{2}\sqrt{k}$,
∵$\frac{{a}_{k}}{\sqrt{k}}≥\sqrt{2}$,∴$\sqrt{2}k<{a}_{k}<\frac{3\sqrt{k}}{2}$,
當(dāng)n=k+1時,$_{k+1}=\frac{{a}_{k+1}}{\sqrt{k+1}}$<$\frac{f(\frac{3}{2}\sqrt{k})}{\sqrt{k+1}}$=$\frac{\frac{1}{2}\sqrt{k}+\frac{1}{\frac{3}{2}\sqrt{k}}}{\sqrt{k+1}}$,
∴只需證$\frac{\frac{3}{2}\sqrt{k}+\frac{1}{\frac{3}{2}\sqrt{k}}}{\sqrt{k+1}}$<$\frac{3}{2}$.
證明如下:∵k>2,∴k>$\frac{16}{9}$,
∴9k>16,∴25k>16(k+1),∴5$\sqrt{k}$>4$\sqrt{k+1}$,
∴$\frac{5}{2}\sqrt{k}$>2$\sqrt{k+1}$,∴$\frac{5}{6}\sqrt{k}>\frac{2}{3}\sqrt{k+1}$,
∴$\frac{3}{2}\sqrt{k}>\frac{2}{3}(\sqrt{k+1}+\sqrt{k})$,
∴$\frac{1}{\frac{3}{2}\sqrt{k}}<\frac{1}{\frac{2}{3}(\sqrt{k+1}+\sqrt{k})}$,∴$\frac{1}{\frac{3}{2}\sqrt{k}}<\frac{3}{2}(\sqrt{k+1}-\sqrt{k})$,
∴$\frac{3}{2}\sqrt{k}+\frac{1}{\frac{3}{2}\sqrt{k}}<\frac{3}{2}\sqrt{k+1}$,
∴$\frac{\frac{3}{2}\sqrt{k}+\frac{1}{\frac{3}{2}\sqrt{k}}}{\sqrt{k+1}}<\frac{3}{2}$,
∴n=k+1時,$_{k+1}<\frac{3}{2}$成立.
綜合(a),(b)知bn<$\frac{3}{2}$.
綜上所述:$\sqrt{2}$≤bn<$\frac{3}{2}$(n≥2,n∈N*).

點(diǎn)評 本題考查實(shí)數(shù)值的求法,考查不等式的證明,綜合性強(qiáng)、難度大,解題時要認(rèn)真審題,注意均值定理、數(shù)學(xué)歸納法、數(shù)列知識的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,由曲線y=sinx,直線x=$\frac{3}{2}$π與x軸非負(fù)半軸圍成的陰影部分面積是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.根據(jù)表,能夠判斷方程f(x)=g(x)在四個區(qū)間:①(-1,0);②(0,1);③(1,2);④(2,3)中有實(shí)數(shù)解的是②.(將正確的序號都填上)
x-10123
f(x)-0.63.15.45.97
g(x)-0.53.44.85.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若tan2x-sin2x=$\frac{16}{5}$,則tan2xsin2x=$\frac{16}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知命題p:方程(m-1)x2+(m+2)y2=(m-1)(m+2)表示的曲線是雙曲線;命題q:不等式3x2-m>0在區(qū)間(-∞,-1)上恒成立,若“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知三棱錐P-ABC如圖所示,平面PAC⊥平面ABC,正三角形ABC的面積為9$\sqrt{3}$,PC=4,PA=2$\sqrt{13}$,M是AB邊上的一動點(diǎn),則PM的最小值為(  )
A.2$\sqrt{43}$B.$\sqrt{43}$C.$\sqrt{11}$D.2$\sqrt{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某醫(yī)藥公司經(jīng)銷某種品牌藥品,每件藥品的成本為6元,預(yù)計(jì)當(dāng)每件藥品的售價為x元(9≤x≤11)時,一年的銷售量為$\frac{48}{x-5}$萬件,并且全年該藥品需支付2x萬元的宜傳及管理費(fèi).
(1)求該醫(yī)藥公司一年的利潤L(萬元)與每件產(chǎn)品的售價x的函數(shù)關(guān)系式;
(2)當(dāng)每件藥品的售價多少元時,該公司一年的利潤L最大,并求出L的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知x,y∈R且x,y滿足方程x2+4y2=1,試求f(x,y)=3x+4y的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知直線y=x-b與曲線C:y=$\sqrt{1-{x}^{2}}$-1有唯一交點(diǎn),則b的取值范圍是( 。
A.{-$\sqrt{2}$-1,$\sqrt{2}$-1}B.{-$\sqrt{2}$+1,$\sqrt{2}$+1}C.[-2,0]D.(0,2]∪{1-$\sqrt{2}$}

查看答案和解析>>

同步練習(xí)冊答案